Startseite Technik Simulation study of optical time division multiplexing/dense wavelength division multiplexing system based static/dynamic optical transparent networks demonstration through all optical fiber amplifiers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation study of optical time division multiplexing/dense wavelength division multiplexing system based static/dynamic optical transparent networks demonstration through all optical fiber amplifiers

  • Ramachandran Thandaiah Prabu EMAIL logo , Vanitha Lingaraj , Sivakumar Jothilingam , Pattabhirama Mohan Patnala , Ashok Raja , Pennada Siva Satya Prasad und Hegazy Mahmoud Ramadan EMAIL logo
Veröffentlicht/Copyright: 28. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper has clarified the simulation study of optical time division multiplexing/wavelength division multiplexing system based static/dynamic optical transparent networks demonstration through all-optical fiber amplifiers. Received signal power per channel is measured against network reach for both static and dynamic networks in the presence of all-optical Raman/erbium doped fiber amplifier/semiconductor optical amplifier amplifiers. Data rate transmission per channel is demonstrated against repeater spacing for all proposed optical fiber amplifiers based on various near infrared operating wavelengths for both static and dynamic optical transparent networks. In addition, the overall signal per noise ratio is clarified in relation to network throughput and various near infrared operating wavelengths for the static and dynamic transparent optical network based on all proposed amplification techniques. Moreover, the overall system bit error rate is studied and tested against network throughput and various near infrared operating wavelengths for both static and dynamic transparent optical networks based on all proposed amplification techniques.


Corresponding authors: Ramachandran Thandaiah Prabu, Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamilnadu, India, E-mail: ; Hegazy Mahmoud Ramadan, Sina Institute of Technology, Sina, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  4. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Not applicable.

References

1. Aoki, Y. Properties of fiber raman amplification and their applicability to digital optical communication system. J Lightwave Technol 1988;6:1225–39. https://doi.org/10.1109/50.4120.Suche in Google Scholar

2. Emori, Y, Kado, S, Namiki, S. Broadband flat-gain and low noise raman amplifiers pumped by wavelength multiplexed high power laser diodes. Opt Fiber Technol 2002;8:1–13. https://doi.org/10.1016/s1068-5200(02)00003-2.Suche in Google Scholar

3. Ellis, AD, Widdowson, T, Shan, X, Moodie, DG. Three node 40Gb/s OTDM network demonstration using electrc.Optic switches. IEEE Electronics Letters 1994;30:1333–4. https://doi.org/10.1049/el:19940884.10.1049/el:19940884Suche in Google Scholar

4. Karasek, M, Kanka, J, Honzatko, P, Peterk4, P. Time domain simulation of power transients in raman fiber amplifiers. Int J Numer Model Electron Network Dev Field 2004;17:165–76.10.1002/jnm.531Suche in Google Scholar

5. Mohammed, HA. Optical time division multiplexing (OTDM) and hybrid WDM/OTDM PON performance investigation. Int J Electron Commun Comput Eng 2013;4:747–54.Suche in Google Scholar

6. Malik, D, Kaushik, G, Wason, A. Performance evaluation of optical amplifiers for high-speed optical networks. J Opt Commun 2020;41:15–21. https://doi.org/10.1515/joc-2017-0133.Suche in Google Scholar

7. Singh, S, Kaler, RS. Placement of optimized semiconductor optical amplifier in fiber optical communication systems. Optik-Int J Light Elect Opt 2008;119:296–302. https://doi.org/10.1016/j.ijleo.2006.12.003.Suche in Google Scholar

8. Malik, D, Pahwa, K, Wason, A. Performance optimization of SOA, EDFA, raman and hybrid optical amplifiers in WDM network with reduced channel spacing of 50 GHz. Optik-Int J Light Elect Opt. 2016;127:11131–7. https://doi.org/10.1016/j.ijleo.2016.09.047.Suche in Google Scholar

9. Singh, S, Kaler, RS. Novel optical flat gain hybrid amplifier for dense wavelength division multiplexed system. IEEE Photonics Technol Lett 2014;26:173–6. https://doi.org/10.1109/lpt.2013.2291035.Suche in Google Scholar

10. Singh, S, Kaler, RS. Flat gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system. IEEE Photonics Technol Lett 2013;25:250–2. https://doi.org/10.1109/lpt.2012.2231406.Suche in Google Scholar

11. Yadlowsky, MJ, Deliso, EM, Silva, VL. Optical fibers and amplifier for WDM system. Proc IEEE 1997;85:1765–79.10.1109/5.649655Suche in Google Scholar

12. Agrawal, GP. Fiber optic communication systems. New York: John Wiley and Sons; 1997.Suche in Google Scholar

13. Sun, Y, Srivastava, AK, Zhou, J, Sulhoff, JW. Optical fiber amplifiers for WDM optical networks. Bell Labs Tech J 1999;4:187–206.10.1002/bltj.2153Suche in Google Scholar

14. Randy, GC, Ennanuel, D. Modeling erbium doped fibre amplifier. J Lightwave Technol 1991;9:271–83. https://doi.org/10.1109/50.65886.Suche in Google Scholar

15. Behera, JK, Shevgaonkar, RK. Optimal design of raman amplifier. J Lightwave Technol 2004;15:113–6.Suche in Google Scholar

16. Islam, MN. Raman amplifiers for telecommunications-2 subsystems and systems. New York: Springer; 2004:430–1 pp.10.1007/b97301Suche in Google Scholar

17. Hwang, S, Song, KW, Song, KU, Nilsson, J, Park, SH, Cho, K, et al.. Comparative high power conversion efficiency of C-plus L-band EDFA. Electron Lett 2001;37:1539–41.10.1049/el:20011014Suche in Google Scholar

18. Singh, S, Singh, A, Kaler, RS. Performance evaluation of EDFA, raman, and SOA optical amplifier for WDM systems. Optik 2013;124:95–101. https://doi.org/10.1016/j.ijleo.2011.11.043.Suche in Google Scholar

19. Kim, Y, Jang, H, Kim, Y, Lee, J, Jang, D, Jeong, J, et al.. Transmission performance of 10 Gbps 1550 nm transmitters using semiconductor optical amplifiers as booster amplifiers. J Lightwave Technol 2003;21:476–81. https://doi.org/10.1109/jlt.2003.808751.Suche in Google Scholar

20. Wason, A, Kaler, RS. Rerouting technique with dynamic traffic in WDM optical networks. Opt Fiber Technol 2010;16:50–4. https://doi.org/10.1016/j.yofte.2009.10.002.Suche in Google Scholar

21. Kaur, R, Randhawa, R, Kaler, RS. Performance evaluation of optical amplifier for 16 × 10, 32 × 10 and 64 × 10 Gbps WDM system. Optik 2013;124:693–700. https://doi.org/10.1016/j.ijleo.2012.01.008.Suche in Google Scholar

22. Sheetala, A, Sharma, AK, Kaler, RS. Simulation of high capacity 40 Gb/s long haul DWDM system using different modulation formats and dispersion compensation schemes in the presence of Kerr’s effect. Optik 2008;121:739–49. https://doi.org/10.1016/j.ijleo.2008.11.009.Suche in Google Scholar

23. Zhang, N, Yang, P, Ren, J, Chen, D, Yu, L, Shen, X, et al.. Synergy of big data and 5 g wireless networks: opportunities, approaches, and challenges. IEEE Wirel Commun 2018;25:12–18. https://doi.org/10.1109/mwc.2018.1700193.Suche in Google Scholar

24. Alavi, SE, Soltanian, MR, Amiri, IS, Khalily, M, Supaat, AS, Ahmad, H, et al.. Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci Rep 2016;6:19891. https://doi.org/10.1038/srep19891.Suche in Google Scholar PubMed PubMed Central

25. Dong, B, Jia, J, Tao, L, Li, G, Li, Z, Huang, C, et al.. Photonic-based W-band integrated sensing and communication system with flexible time-frequency division multiplexed waveforms for fiber-wireless network. J Lightwave Technol 2024;42:1281–95. https://doi.org/10.1109/jlt.2024.3354070.Suche in Google Scholar

26. Kitayama, K-I, Hiramatsu, A, Fukui, M, Tsuritani, T, Yamanaka, N, Okamoto, S, et al.. Photonic network vision 2020 – toward smart photonic cloud. J Lightwave Technol 2014;32:2760–70. https://doi.org/10.1109/jlt.2014.2324651.Suche in Google Scholar

27. Zhu, Z, Zhao, S, Li, X, Qu, K, Lin, T. Photonic generation of frequency-octupled microwave signal with reduced electrical local oscillator power and improved spectrum purity. Opt Quant Electron 2017;49:65. https://doi.org/10.1007/s11082-017-0907-9.Suche in Google Scholar

28. Douik, A, Dahrouj, H, Al-Naffouri, TY, Alouini, MS. Hybrid radio/free-space optical design for next generation backhaul systems. IEEE Trans Commun 2016;64:2563–77. https://doi.org/10.1109/tcomm.2016.2557789.Suche in Google Scholar

29. Zhuang, L, Roeloffzen, CG, Meijerink, A, Burla, M, Marpaung, DA, Leinse, A, et al.. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas – part II: experimental prototype. J Lightwave Technol 2010;28:19–31. https://doi.org/10.1109/jlt.2009.2032137.Suche in Google Scholar

30. Zhuang, L, Roeloffzen, CG, Hoekman, M, Boller, KJ, Lowery, AJ. Programmable photonic signal processor chip for radiofrequency applications. Optica 2015;2:854–9. https://doi.org/10.1364/optica.2.000854.Suche in Google Scholar

31. Winzer, PJ. Scaling optical fiber networks: challenges and solutions. Opt Photon News 2015;26:28–35. https://doi.org/10.1364/opn.26.3.000028.Suche in Google Scholar

32. Marpaung, D, Yao, J, Capmany, J. Integrated microwave photonics. Nature Photon 2019;13:80–90. https://doi.org/10.1038/s41566-018-0310-5.Suche in Google Scholar

33. Amaya, N, Yan, S, Channegowda, M, Rofoee, BR, Shu, Y, Rashidi, M, et al.. Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration. Opt Express 2014;22:3638–47. https://doi.org/10.1364/oe.22.003638.Suche in Google Scholar PubMed

34. Liu, C, Wang, J, Cheng, L, Zhu, M, Chang, GK. Key microwave photonics technologies for next-generation cloud based radio access networks. J Lightwave Technol 2014;32:3452–60. https://doi.org/10.1109/jlt.2014.2338854.Suche in Google Scholar

35. Zhu, S, Li, M, Wang, X, Zhu, NH, Li, W. Photonic generation of ultra-wideband signal by truncating a continuous wave into a pulse. IEEE Photonics Technol Lett 2018;30:1862–5. https://doi.org/10.1109/lpt.2018.2870076.Suche in Google Scholar

36. Wu, T, Zhang, C, Zhou, H, Huang, H, Qiu, K. Photonic microwave waveforms generation based on frequency and time-domain synthesis. IEEE Access 2018;6:34372–9. https://doi.org/10.1109/access.2018.2842250.Suche in Google Scholar

37. Bauters, JF, Heck, MJ, John, DD, Barton, JS, Bruinink, CM, Leinse, A, et al.. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt Express 2011;19:24090–101. https://doi.org/10.1364/oe.19.024090.Suche in Google Scholar

38. Yoshida, Y, Maruta, A, Kitayama, K-I, Nishihara, M, Tanaka, T, Takahara, T, et al.. SDN-based network orchestration of variable-capacity optical packet switching network over programmable flexi-grid elastic optical path network. J Lightwave Technol 2015;33:609–17. https://doi.org/10.1109/jlt.2014.2351852.Suche in Google Scholar

39. Ghassemlooy, Z, Amon, S, Uysal, M, Xu, Z, Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J Sel Area Commun 2015;33:1738–49.10.1109/JSAC.2015.2458511Suche in Google Scholar

40. Kaushal, H, Kaddoum, G. Optical communication in space: challenges and mitigation techniques. IEEE Commun Surv Tutorials 2017;19:57–96. https://doi.org/10.1109/comst.2016.2603518.Suche in Google Scholar

Received: 2025-10-09
Accepted: 2025-11-09
Published Online: 2025-11-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0444/html
Button zum nach oben scrollen