Startseite Technik Investigation of a highly suitable optical amplifier (EDFA/Raman) for a 10 × 10 Gbps WDM system using different optical signal power levels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of a highly suitable optical amplifier (EDFA/Raman) for a 10 × 10 Gbps WDM system using different optical signal power levels

  • Neha und Chakresh Kumar EMAIL logo
Veröffentlicht/Copyright: 13. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For effective communication in a long-reach passive optical network, there is a need for a cost-effective system for the regeneration of a signal. Optical amplifiers are one of the appropriate solutions for this. With keeping this scenario in mind, A highly reliable architecture of a 10 × 10 Gbps WDM system is analyzed using two different optical amplifiers erbium-doped fiber amplifier (EDFA) and a Raman amplifier. The performance of two amplifiers, EDFA and Raman, is investigated at different power levels, 4 dB m, 8 dB m, and 10 dB m, over variable lengths of fiber, 50 km, 70 km, 90 km, 120 km, and 150 km. Q-factor, BER, jitter, eye diagrams, and optical spectra are considered as performance metrics for two amplifiers. 10 Gbps data is successfully transmitted over 10 channels having different frequencies ranging between 192.966 THz and 193.86 THz. The downlink transmission of data is done using a wavelength of 1,550 nm. Results show that EDFA is superior to Raman in terms of gain at a lower level of signal power. Whereas Raman is superior to EDFA at higher power in terms of noise. A maximum Q-factor of 30.62 and a minimum BER of 1 × 10−40, is achieved by using EDFA at 4 dB m over 50 km.


Corresponding author: Chakresh Kumar, University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Eid, MM, Sorathiya, V, Lavadiya, S, Said Abd El-Hamid, H, Rashed, ANZ. Wide band fiber systems and long transmission applications based on optimum optical fiber amplifiers lengths. J Opt Commun 2025;45:s347–57. https://doi.org/10.1515/joc-2021-0020.Suche in Google Scholar

2. Amiri, IS, Mohammed Aref Mahmoud Houssien, F, Rashed, ANZ, Mohammed, AENA. Optical networks performance optimization based on hybrid configurations of optical fiber amplifiers and optical receivers. J Opt Commun 2025;45:s1–13. https://doi.org/10.1515/joc-2019-0153.Suche in Google Scholar

3. Luay, I, Mansour, TSA. Performance investigation for the WDM-passive optical network using multicarrier source. J Opt Commun 2025;45:s1875–84. https://doi.org/10.1515/joc-2023-0147.Suche in Google Scholar

4. Zhang, J, Jia, Z. Coherent passive optical networks for 100G/λ-and-beyond fiber access: recent progress and outlook. IEEE network 2022;36:116–23. https://doi.org/10.1109/mnet.005.2100604.Suche in Google Scholar

5. Li, F, Yin, M, Luo, Z, Wang, X, Rong, L, Li, Z. Architecture and key digital signal processing techniques of a next-generation passive optical network. J Opt Commun Netw 2023;15:A82–91. https://doi.org/10.1364/jocn.468681.Suche in Google Scholar

6. Bosu, S, Bhattacharjee, B. A design of all-optical read-only memory using reflective semiconductor optical amplifier. J Opt 2023;52:1083–93. https://doi.org/10.1007/s12596-022-00943-8.Suche in Google Scholar

7. Kovacs, IB, Faruk, MS, Torres-Ferrera, P, Savory, SJ. Simplified coherent optical network units for very-high-speed passive optical networks. J Opt Commun Netw 2024;16:C1–10. https://doi.org/10.1364/jocn.514867.Suche in Google Scholar

8. Nahaei, FS, Rostami, A, Matloub, S. Selective band amplification in ultra-broadband superimposed quantum dot reflective semiconductor optical amplifiers. Appl Opt 2022;61:4509–17. https://doi.org/10.1364/ao.427496.Suche in Google Scholar

9. Crockett, B, Romero Cortés, L, Maram, R, Azaña, J. Optical signal denoising through temporal passive amplification. Optica 2022;9:130–8. https://doi.org/10.1364/optica.428727.Suche in Google Scholar

10. Ramírez, JM, Fanneau de la Horie, P, Provost, JG, Malhouitre, S, Néel, D, Jany, C, et al.. Low-threshold, high-power on-chip tunable III-V/Si lasers with integrated semiconductor optical amplifiers. Appl Sci 2021;11:11096. https://doi.org/10.3390/app112311096.Suche in Google Scholar

11. Zali, AR, Kleijn, S, Augustin, L, Tessema, NM, Prifti, K, Stabile, R, et al.. Design and fabrication of low polarization dependent bulk SOA co-integrated with passive waveguides for optical network systems. J Lightwave Technol 2022;40:1083–91. https://doi.org/10.1109/jlt.2021.3128426.Suche in Google Scholar

12. Raja, A, Mukherjee, K, Roy, JN. Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J Comput Electron 2021;20:387–96. https://doi.org/10.1007/s10825-020-01607-1.Suche in Google Scholar

13. Fayad, A, Alqhazaly, Q, Cinkler, T. Time and wavelength division multiplexing passive optical network comparative analysis: modulation formats and channel spacings. Int J Electron Commun Eng 2021;15:231–7.Suche in Google Scholar

14. Kumar, C, Kumar, G. Performance analysis of hybrid optical amplifier for hybrid passive optical networks. Wirel Pers Commun 2021;120:3005–15. https://doi.org/10.1007/s11277-021-08596-9.Suche in Google Scholar

15. Sticca, G, Ibrahimi, M, Musumeci, F, Di Cicco, N, Castoldi, A, Pastorelli, R, et al.. Selective hybrid EDFA/Raman amplifier placement to mitigate lightpath degradation in (C+ L) networks. J Opt Commun Netw 2023;15:C232–41. https://doi.org/10.1364/jocn.481750.Suche in Google Scholar

16. Prigunovs, D, Morevs, P, Parfjonovs, M, Salgals, T, Kudojars, R, Bobrovs, V. Performance analysis of hybrid Raman-EDFA amplifier in WDM transmission systems. In: 2023 Photonics & electromagnetics research symposium (PIERS). Riga, Latvia: IEEE; 2023:1787–91 pp.10.1109/PIERS59004.2023.10221537Suche in Google Scholar

17. Hamadamen, NI, Abdulhameed, SJ, Abdulkrim, HK. Production survey of designing a hybrid optical amplifier (HOP) for WDM systems by using EDFA and Raman amplifiers. J Des Eng 2021;7:7476–91.Suche in Google Scholar

18. Gaur, CB. Fibre optic parametric amplifiers for transient limited optical fibre systems. Doctoral dissertation. Birmingham, UK: Aston University; 2021.Suche in Google Scholar

19. Kaur, A, Bhamrah, MS, Atieh, A. Raman pumps power distribution optimization for maximum overall gain and flatness of a hybrid SOA/EDFA/Raman optical amplifier. J Opt Commun 2024;45:443–57. https://doi.org/10.1515/joc-2021-0120.Suche in Google Scholar

20. Mohammed, KA, Younis, BM. Comparative performance of optical amplifiers: Raman and EDFA. TELKOMNIKA (Telecommunication Computing Electronics and Control) 2020;18:1701–7. https://doi.org/10.12928/telkomnika.v18i4.15706.Suche in Google Scholar

21. Kumari, M. A review on optical amplifiers for future optical networks. In: 2023 5th international conference on smart systems and inventive technology (ICSSIT). IEEE; 2023:583–6 pp.10.1109/ICSSIT55814.2023.10060875Suche in Google Scholar

22. Islam, MN. Raman amplifiers for telecommunications. IEEE J Sel Top Quant Electron 2002;8:548–59. https://doi.org/10.1109/jstqe.2002.1016358.Suche in Google Scholar

23. Kashima, N. Application of Raman amplification using a reflector in passive optical networks. J Opt Commun 2012;33:265–72. https://doi.org/10.1515/joc-2012-0054.Suche in Google Scholar

24. Makwana, M, Khant, S, Patel, A. Advancements in long-distance PON connectivity using WDM and EDFA. In: 2024 11th international conference on reliability, infocom technologies and optimization (trends and future directions) (ICRITO). IEEE; 2024:1–6 pp.10.1109/ICRITO61523.2024.10522281Suche in Google Scholar

25. Neto, BMB. Alternative techniques for Raman amplification in telecommunications. Doctoral dissertation. Portugal: Universidade de Aveiro; 2010.Suche in Google Scholar

26. Gaur, CB, Ferreira, F, Gordienko, V, Ribeiro, V, Szabó, ÁD, Doran, NJ. Experimental comparison of fiber optic parametric, Raman and erbium amplifiers for burst traffic for extended reach PONs. Opt Express 2020;28:19362–73. https://doi.org/10.1364/oe.394379.Suche in Google Scholar PubMed

27. Bakar, MA, Adikan, FM, Mahdi, MA. Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier. IEEE Photon J 2012;4:1042–50. https://doi.org/10.1109/jphot.2012.2203334.Suche in Google Scholar

28. Khant, S, Makwana, M, Patel, A, Patel, D. Performance enhancement in terms of BER and data rate of next generation optical networking system using Raman amplifier. In: 2025 3rd international conference on integrated circuits and communication systems (ICICACS). IEEE; 2025:1–7 pp.10.1109/ICICACS65178.2025.10967577Suche in Google Scholar

29. Ismayilova, K, Adilova, A, Zeynalov, F, Mahmudova, I, Aghayeva, A. Application of amplifying technologies to increase optical signal power. Sci Work Int Sci J 2025;19:348–54.10.36719/2663-4619/115/348-354Suche in Google Scholar

30. Miura, J. Recent advances of optical amplification technology. Opt Metro Net Short-Haul Systems IX 2017;10129:7–12.10.1117/12.2251135Suche in Google Scholar

31. de Oliveira, JRF, de Moura, UC, de Paiva, GER, de Freitas, AP, de Carvalho, LHH, Parahyba, VE. Hybrid EDFA/Raman amplification topology for repeaterless 4.48 Tb/s (40 112 Gb/s DP-DQPSK) transmission over 302 Km of G. 652 standard single mode fiber. J Lightwave Technol 2013;31:3099–108.10.1109/JLT.2013.2273438Suche in Google Scholar

32. Subbanna, BB, Meenakshi, LD. The role of optical amplifiers in optical fiber communication. Int J Eng Adv Technol 2013;2:730–3.Suche in Google Scholar

33. Ogoshi, H, Ichino, S, Kurotori, K. Broadband optical amplifiers for DWDM systems. Furukawa Electr Rev 2000:9–12.Suche in Google Scholar

34. Bayart, D. Erbium-doped and Raman fiber amplifiers. C R Phys 2003;4:65–74. https://doi.org/10.1016/s1631-0705-02-00004-x.Suche in Google Scholar

35. Prajapati, JC. Performance enhancement of 8 channel WDM-RoF PON system at 80 Gbps data rate using Raman amplifier. Singapore: Springer; 2018.10.1007/978-981-10-3812-9_45Suche in Google Scholar

36. Shi, W, Zou, C, Cao, Y, Liu, J. The progress and trend of heterogeneous integration silicon/III-V semiconductor optical amplifiers In: Photonics. MDPI; 2023, vol 10:161 p.10.3390/photonics10020161Suche in Google Scholar

37. Mukherjee, K, Maji, K, Raja, A, Mandal, MK. All-optical soliton based universal logic NOR utilizing a single reflective semiconductor optical amplifier (RSOA). Photonic Netw Commun 2022;43:101–8. https://doi.org/10.1007/s11107-021-00956-6.Suche in Google Scholar

38. Krishnan, K, Vignesh, GD, Ramachandran, BS, Eshwar, R, Patnala, PM, Chandrasekaran, SN, et al.. Hybrid optical amplification units in passive optical access communication networks for the maximization of long fiber reach and average repeater spacing in upstream/downstream direction. J Opt 2025:1–11. https://doi.org/10.1007/s12596-025-02553-6.Suche in Google Scholar

39. Malhi, KS, Patterh, MS, Bhamrah, MS. Performance analysis of distributed fiber Raman amplifiers employing higher order pumping schemes in optical transmission systems. Turk J Electr Eng Comput Sci 2018;26:1946–52. https://doi.org/10.3906/elk-1705-103.Suche in Google Scholar

40. Taha, TA, Ayoob, SA, Yaseen, MT. Raman/EDFA hybrid system to enhance the optical signal in the optical network. J Commun 2023;18:621–8.10.12720/jcm.18.10.621-628Suche in Google Scholar

41. Armel, BJ, Jean-Francois, ED, Luc, IE. Comparative evaluation of optical amplifiers in passive optical access networks. Indonesian J Electr Eng Comput Sci 2022;27:1452–61. https://doi.org/10.11591/ijeecs.v27.i3.pp1452-1461.Suche in Google Scholar

42. Lee, HS, Yang, CL, Chou, CH. Protection scheme for a wavelength-division-multiplexed passive optical network based on reconfigurable optical amplifiers. Appl Sci 2021;12:365. https://doi.org/10.3390/app12010365.Suche in Google Scholar

43. Singh, A, Sindhwani, M, Gupta, V, Choudhary, S, Kumar, A, Pahuja, H, et al.. Design and implementation of SOA and EDFA amplifiers in PON networks for enhanced signal transmission. J Opt 2025:1–13. https://doi.org/10.1007/s12596-025-02640-8.Suche in Google Scholar

44. Sahu, D, Kumar, C. Performance analysis of optical amplifiers for Nyquist super channel transmission system. J Opt 2024:1–30. https://doi.org/10.1007/s12596-024-02364-1.Suche in Google Scholar

45. Asha, Dahiya, S. Design and analysis of 160 GHz millimeter wave RoF system with dispersion tolerance. J Opt 2023;52:1461–76. https://doi.org/10.1007/s12596-022-00957-2.Suche in Google Scholar

46. Asha, Dahiya, S. Optimization of high frequency radio over fiber system using cascaded amplifier and dispersion compensation fiber. J Opt 2023;52:1552–65. https://doi.org/10.1007/s12596-022-00988-9.Suche in Google Scholar

47. Kumar, S, Sharma, S, Dahiya, S. WDM-Based 160 gbps radio over fiber system with the application of dispersion compensation fiber and fiber bragg grating. Front. Phys. 2021;9:691387. https://doi.org/10.3389/fphy.2021.691387.Suche in Google Scholar

48. Asha and Dahiya, S (2021) Large tunable 16-Tupled millimeter wave generation utilizing optical carrier suppression with a tunable sideband suppression ratio. Front. Phys. 9:747030. https://doi.org/10.3389/fphy.2021.747030Suche in Google Scholar

49. Asha, Dahiya, S. An efficient ROF link with lower modulation index and higher extinction ratio insensitivity. J Opt 2024;53:3119–29. https://doi.org/10.1007/s12596-023-01437-x.Suche in Google Scholar

50. Dahiya, S, Asha. Asha performance analysis of millimeter wave-based radio over fiber system for next generation networks. J Opt 2024;53:2174–82. https://doi.org/10.1007/s12596-023-01472-8.Suche in Google Scholar

51. Asha, Dahiya, S. Extinction ratio tolerant filterless millimeter wave generation using single parallel MZM. Optoelectron Lett 2023;19:14–19. https://doi.org/10.1007/s11801-023-2130-1.Suche in Google Scholar

52. Asha, Dahiya, S. Photonic upconversion-based millimeter wave generation and transmission for 5G RoF fronthaul system. In: Pandit, M, Gaur, MK, Rana, PS, Tiwari, A, editors. Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems. Singapore: Springer; 2022.10.1007/978-981-19-1653-3_42Suche in Google Scholar

Received: 2025-06-14
Accepted: 2025-07-17
Published Online: 2025-08-13

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0238/html
Button zum nach oben scrollen