Abstract
In this paper, we analyze the performance of free-space optical quantum key distribution (FSO-QKD) using the BB84 protocol with BPSK modulation under realistic channel conditions. The Málaga distribution is employed to model the composite atmospheric turbulence, considering pointing errors. We derive closed-form expressions for the average quantum bit error rate (QBER) and the secure key rate (SKR), incorporating both turbulence and misalignment effects. Numerical results demonstrate the impact of turbulence parameters and beam misalignment on system performance. The findings provide insights for the robust design of FSO-QKD systems under practical deployment conditions.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. He, W, Guha, S, Shapiro, JH, Bash, BA. Performance analysis of free-space quantum key distribution using multiple spatial modes. Opt Express 2021;29:19305–18. https://doi.org/10.1364/oe.426556.Suche in Google Scholar
2. Jin, J, Bourgoin, J-P, Tannous, R, Agne, S, Pugh, CJ, Kuntz, KB, et al.. Genuine time-bin-encoded quantum key distribution over a turbulent depolarizing free-space channel. Opt Express 2019;27:37214–23. https://doi.org/10.1364/oe.27.037214.Suche in Google Scholar PubMed
3. Scriminich, A, Foletto, G, Picciariello, F, Stanco, A, Vallone, G, Villoresi, P, et al.. Optimal design and performance evaluation of free-space quantum key distribution systems. Quant Phys 2022. https://doi.org/10.1088/2058-9565/ac8760. https://arxiv.org/abs/2109.13886.Suche in Google Scholar
4. Yao, Z, Li, M, Wu, Z, Wang, T, Cvijietc, M. Continuous-variable measurement-device-independent quantum key distribution over fluctuated free-space quantum channels. Opt Commun 2025;575:131294. https://doi.org/10.1016/j.optcom.2024.131294.Suche in Google Scholar
5. Ursin, R, Tiefenbacher, F, Schmitt-Manderbach, T, Weier, H, Scheidl, T, Lindenthal, M, et al.. Free-space distribution of entanglement and single photons over 144 km. Nat Phys 2007;3:481–6. https://doi.org/10.1038/nphys629.Suche in Google Scholar
6. Raouf, AHF, Safari, M, Uysal, M. Performance analysis of quantum key distribution in underwater turbulence channels. J Opt Soc Am B 2020;37:564–73. https://doi.org/10.1364/josab.376267.Suche in Google Scholar
7. Trinh, PV, Casado, AC, Pham, AT, Toyoshima, M. Effects of atmospheric turbulence and misalignment-induced fading on the secrecy performance of IM/DD free-space CV-QKD systems using a Gaussian beam. Int Conf Space Opt-ICSO 2018 2018;11180:731–49.10.1117/12.2535989Suche in Google Scholar
8. Ata, Y, Kiasaleh, K. Performance of quantum key distribution in free-space optical systems under various atmospheric channel effects. Opt Eng 2025;4:048101. https://doi.org/10.1117/1.oe.64.4.048101.Suche in Google Scholar
9. Trinh, PV, Carrasco-Casado, A, Takenak, H. Statistical verifications and deep-learning predictions for satellite-to-ground quantum atmospheric channels. Commun Phys 2022;5:1–18.10.1038/s42005-022-01002-1Suche in Google Scholar
10. Tannous, R, Wu, W. Towards fully passive time-bin quantum key distribution over multi-mode channels. arXiv 2023:1–12.Suche in Google Scholar
11. Rödiger, J, Perlot, N, Benson, O, Freund, R. Time-frequency quantum key distribution over a free-space optical link. arXiv 2021:1–8.Suche in Google Scholar
12. Jurado-Navas, A, Garrido-Balsells, JM, Paris, JF, Puerta-Notario, A. A unifying statistical model for atmospheric optical scintillation. Numer Simulat Phys Eng Proc. IntechOpen 2011;181–206. https://doi.org/10.48550/arXiv.1102.1915.Suche in Google Scholar
13. Elsayed, EE, Yousif, BB. Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems. Opt Quant Electron 2020;52. https://doi.org/10.1007/s11082-020-02497-0.Suche in Google Scholar
14. Elsayed, EE, Hayal, MR, Nurhidayat, I, Shah, MA, Elfikky, A, Boghdady, AI, et al.. Coding techniques for diversity enhancement of dense wavelength division multiplexing MIMO-FSO fault protection protocols systems over atmospheric turbulence channels. IET Optoelectron 2024;18:11–31. https://doi.org/10.1049/ote2.12111.Suche in Google Scholar
15. Elsayed, EE. Investigations on modified OOK and adaptive threshold for wavelength division multiplexing free-space optical systems impaired by interchannel crosstalk, atmospheric turbulence, and ASE noise. J Opt 2024. https://doi.org/10.1007/s12596-024-01929-4.Suche in Google Scholar
16. Singh, M, Elsayed, EE, Alayedi, M, Aly, MH, Abd El-Mottaleb, SA. Performance analysis in spectral-amplitude-coding-optical-code-division-multiple-access using identity column shift matrix code in free space optical transmission systems. Opt Quant Electron 2024;56. https://doi.org/10.1007/s11082-023-05721-9.Suche in Google Scholar
17. Trung, HD, Vu, BT, Pham, AT. Performance of free-space optical MIMO systems using SC-QAM over atmospheric turbulence channels. In: 2013 IEEE International Conference on Communications (ICC). Budapest, Hungary: IEEE; 2013:3846–50 pp.10.1109/ICC.2013.6655156Suche in Google Scholar
18. Arya, S, Chung, YH. A unified statistical model for Málaga distributed optical scattering communications. Opt Commun 2020;463:125402. https://doi.org/10.1016/j.optcom.2020.125402.Suche in Google Scholar
19. Das, A, Bag, B, Bose, C, Chandra, A. Free space optical links over Málaga turbulence channels with transmit and receive diversity. Opt Commun 2020;456:124591. https://doi.org/10.1016/j.optcom.2019.124591.Suche in Google Scholar
20. Ibrahim, AA, Ata, SÖ, Durak-Ata, L. Performance of FSO communication systems employing Alamouti-type space-time encoding over Málaga channels with pointing errors. IEEE Photon J 2022;14:1–8. https://doi.org/10.1109/jphot.2022.3142682.Suche in Google Scholar
21. Trung, HD, Tuan, DT, Pham, AT. Pointing error effects on performance of free-space optical communication system using SC-QAM signals over atmospheric turbulence channels. AEU-Int J Electron Commun 2014;68:869–76. https://doi.org/10.1016/j.aeue.2014.04.008.Suche in Google Scholar
22. Baykal, Y. Pointing error analysis in FSO links under weak-to-moderate turbulence. Opt Eng 2018;57:123456.Suche in Google Scholar
23. Trung, HD. Performance analysis of amplify-and-forward relaying FSO/SC-QAM systems over weak turbulence channels and pointing error impairments. J Opt Commun 2018;39:93–100. https://doi.org/10.1515/joc-2016-0110.Suche in Google Scholar
24. Ai, DH, Trung, HD, Tuan, DT. On the ASER performance of amplify-and-forward relaying MIMO/FSO systems using SC-QAM signals over Log Normal and Gamma-Gamma atmospheric turbulence channels and pointing error impairments. J Inf Telecommun (TJIT) 2020;4:1–15. https://doi.org/10.1080/24751839.2020.1732734.Suche in Google Scholar
25. Trung, HD. Performance of uav-to-ground FSO communications with APD and pointing errors. Appl Syst Innov. 2021;4:65. https://doi.org/10.3390/asi4030065.Suche in Google Scholar
26. Jennewein, T. Satellite-to-ground QKD with BB84 protocol. Nat Photonics 2017;11:123–30.Suche in Google Scholar
27. Higgins, BL, Kuntz, KB. Multi-hop quantum key distribution for satellite networks under atmospheric turbulence. IEEE Trans Quant Eng 2022;3:123456.Suche in Google Scholar
28. Bennet, CH, Brassard, G. Quantum Cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore, India: IEEE; 1984:175–9 pp.Suche in Google Scholar
29. Ghalaii, M, Pirandola, S. Quantum communications in a moderate-to-strong turbulent space. Commun Phys 2022;5:1–12. https://doi.org/10.1038/s42005-022-00814-5.Suche in Google Scholar
30. Pirandola, S, Laurenza, R, Ottaviani, C, Bacco, D. Fundamental limits of repeaterless quantum communications. Nat Commun;10:1560.Suche in Google Scholar
31. Agne, S, Jin, J. Quantum communication with high-fidelity entanglement over turbulent free-space channels. Phys Rev Lett 2020;124:110504.Suche in Google Scholar
32. Kuntz, KB, Higgins, BL. Decoy-state quantum key distribution with high-performance detectors in free-space. Optica 2018;5:1284–91.Suche in Google Scholar
33. Leitgeb, E, Schwarz, M, Gappmair, W. Impact of pointing errors on free-space optical links under weak-to-moderate turbulence. Appl Opt 2018;57:6789–96.Suche in Google Scholar
34. Safari, M, Uysal, M, Chan, V. Relay-assisted free-space optical communication under turbulence and pointing errors. IEEE Photon J 2017;9:123456.Suche in Google Scholar
35. Tombras, GS, Nistazakis, HE, Tsigopoulos, AD. Quantum key distribution reliability under atmospheric turbulence for the BB84 protocol. IEEE Trans Commun 2019;67:789–98.Suche in Google Scholar
36. Uysal, M, Baykal, Y, Ghassemlooy, Z. Multi-hop FSO systems with relay selection under turbulence and pointing errors. IEEE Access 2023;11:123456.Suche in Google Scholar
37. Vasylyev, D, Semenov, AA, Vogel, W. Atmospheric quantum channels with weak and strong turbulence. Phys Rev Lett 2016;117:090501. https://doi.org/10.1103/physrevlett.117.090501.Suche in Google Scholar PubMed
38. Al-Badarneh, YH, Badarneh, OS, Alshawaqfeh, MK, Khattab, TM, Hasna, MO. A unified MGF-based performance analysis of quantum communications over turbulence channels with pointing errors. IEEE Wireless Commun Lett 2025:1. https://doi.org/10.1109/lwc.2025.3563192.Suche in Google Scholar
39. Verma, H, Singh, K, Mallik, RK. New insights into achievable spectral efficiency with adaptive free space optical transmissions. arXiv 2025:1–11.Suche in Google Scholar
40. Xu, F, Ma, X, Zhang, Q, Lo, H-K, Pan, J-W. Security of quantum key distribution with realistic devices. Rev Mod Phys 2020;92:025002. https://doi.org/10.1103/revmodphys.92.025002.Suche in Google Scholar
41. Rivest, RL, Shamir, A, Adleman, LM. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 1978;21:120–6. https://doi.org/10.1145/359340.359342.Suche in Google Scholar
42. Vernam, GS. Cipher printing telegraph systems for secret wire and radio telegraphic communications. J AIEE 1926;45:109–15. https://doi.org/10.1109/jaiee.1926.6534724.Suche in Google Scholar
43. Gisin, N, Ribordy, G, Tittel, W, Zbinden, H. Quantum cryptography. Am Phys Soc 2002;74:145–95. https://doi.org/10.1103/revmodphys.74.145.Suche in Google Scholar
44. Kumar, SS, Kaushik, M. State-of-the-art analysis of quantum cryptography: applications and future prospects. Front Phys 2024;12:1–13. https://doi.org/10.3389/fphy.2024.1456491.Suche in Google Scholar
45. Yan, Z, Meyer-Scott, E, Bourgoin, J-, Higgins, BL, Gigov, N, MacDonald, A, et al.. Novel high-speed polarization source for decoy-state BB84 quantum key distribution over free space and satellite links. J Lightwave Technol 2013;9:1399–408. [46]. https://doi.org/10.1109/jlt.2013.2249040.Suche in Google Scholar
46. Hassan, MM, Reaz, K, Green, A, Crum, N, Siopsis, G. Experimental free-space quantum key distribution over a turbulent high-loss channel. preprint. 2023. https://doi.org/10.1109/qce57702.2023.00133 https://arxiv.org/pdf/2305.01345.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston