Startseite Flexi-grid optical network C-band capacity and spectral efficiency with various multi-carrier modulation schemes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Flexi-grid optical network C-band capacity and spectral efficiency with various multi-carrier modulation schemes

  • Adarsha Maskibail EMAIL logo , Ugra Mohan Roy und Malathi Sathish
Veröffentlicht/Copyright: 8. Juli 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study presents a rigorous analysis of theoretical Bit Error Rate (BER) formulations for M-Ary Quadrature Amplitude Modulation (M-QAM) formats, substantiated through comprehensive simulation models. The investigation focuses on high-capacity flexi-grid optical networks employing coherent detection systems to achieve 1 Tbps data transmission using PM-16QAM, PM-32QAM, and PM-64QAM modulation formats. The simulation outcomes closely align with theoretical predictions across both back-to-back and 800 km transmission scenarios, demonstrating the validity of BER-based system assessment methodologies. The evaluation considers a four-subcarrier super-channel configuration for each modulation format. Corresponding C-band capacities of 24 Tbps, 32 Tbps, and 38.4 Tbps are achieved for PM-16QAM, PM-32QAM, and PM-64QAM, yielding spectral efficiencies of 5.0 b/s/Hz, 6.67 b/s/Hz, and 8.0 b/s/Hz, respectively. Forward Error Correction (FEC) BER thresholds of 3.7 × 10−2 are applied for PM-16QAM and PM-32QAM, and 5.6 × 10−2 for PM-64QAM, based on Soft-Decision FEC (SD-FEC) threshold. It is further demonstrated that PM-16QAM with 50 GHz channel spacing and PM-32QAM and PM-64QAM with 37.5 GHz spacing are capable of supporting terabit-scale flexi-grid transmission. The maximum achievable transmission distances are 1,600 km, 1,200 km, and 800 km for PM-16QAM, PM-32QAM, and PM-64QAM, respectively, under realistic system constraints.


Corresponding author: Adarsha Maskibail, Department of Electronics and Communication Engineering, M. S. Ramaiah University of Applied Sciences, Bangalore, 560054, India, E-mail:

Acknowledgments

I sincerely thank Ramaiah University of Applied Sciences, Bangalore, for the resources and support that made this research possible. My deepest gratitude to my supervisors for their invaluable guidance. To my dad, mom, and sister – your unwavering love and support have been my greatest strength. A heartfelt thanks to my research friends for the discussions, laughs, and motivation. This work reflects the incredible people who stood by me – thank you!

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have taken full responsibility for the content of this submitted the manuscript and have given their approval for its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Kao, KC, Hockham, GA. Dielectric-Fibre surface waveguides for optical frequencies. IEE Proc – Part J Optoelectron 1986;133:191–8. https://doi.org/10.1049/piee.1966.0189.Suche in Google Scholar

2. Gunasekaran, P, Azhagu Jaisudhan Pazhani, A, Rameshbabu, A, Kannan, B. Role of wavelength division multiplexing in optical communication. Model Optim Opt Commun Networks 2023:217–34. https://doi.org/10.1002/9781119839569.CH12.Suche in Google Scholar

3. Dong, Y, Shi, Y, Zou, X, Pan, W, Yan, L. Comparison of neural network equalizers for IMDD optical transmission. Asia Commun Photonics Conf ACP 2024:1–4. https://doi.org/10.1109/ACP/IPOC63121.2024.10809711.Suche in Google Scholar

4. Liu, Y, Qiu, Z, Ji, X, Lukashchuk, A, He, J, Riemensberger, J, et al.. A photonic integrated circuit-based erbium-doped waveguide amplifier. 2023 Conf. Lasers Electro-Optics Eur. Eur. Quantum Electron. Conf. CLEO/Europe-EQEC 2023, 2023. https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10232783.Suche in Google Scholar

5. Chen, H, Jin, C, Huang, B, Fontaine, NK, Ryf, R, Shang, K, et al.. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nat Photonics 2016;10:529–33. https://doi.org/10.1038/nphoton.2016.125.Suche in Google Scholar

6. Rahman, T, Rafique, D, Spinnler, B, Calabro, S, de Man, E, Feiste, U, et al.. Long-haul transmission of PM-16QAM-PM-32QAM-and PM-64QAM-based terabit superchannels over a field deployed legacy fiber. J Lightwave Technol 2016;34:3071–9. https://ieeexplore.ieee.org/document/7463011.10.1109/JLT.2016.2560259Suche in Google Scholar

7. Linke, RA, Gnauck, AH. High-capacity coherent lightwave systems. J Lightwave Technol 1988;6:1750–69. https://ieeexplore.ieee.org/document/9992.10.1109/50.9992Suche in Google Scholar

8. Tsukamoto, S, Katoh, K, Kikuchi, K. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J Lightwave Technol 2006;24:12–21. https://doi.org/10.1109/jlt.2005.860477.Suche in Google Scholar

9. Singh, M, Elsayed, EE, Alayedi, M, Aly, MH, Abd El-Mottaleb, SA. Performance analysis in spectral-amplitude-coding-optical-code-division-multiple-access using identity column shift matrix code in free space optical transmission systems. Opt Quant Electron 2024;56:1–23. https://doi.org/10.1007/S11082-023-05721-9/METRICS.Suche in Google Scholar

10. Adarsha, M, Malathi, S, Kumar, S. Analysis of system capacity and spectral efficiency of fixed-grid network. Int J Comput Networks Commun 2023;15:93–111. https://aircconline.com/abstract/ijcnc/v15n5/15523cnc06.html.10.5121/ijcnc.2023.15506Suche in Google Scholar

11. Li, SA, Huang, H, Pan, Z, Yin, R, Wang, Y, Fang, Y, et al.. Enabling technology in high-baud-rate coherent optical communication systems. IEEE Access 2020;8:111318–29. https://ieeexplore.ieee.org/document/9120001.10.1109/ACCESS.2020.3003331Suche in Google Scholar

12. Olaleye, TM, Ribeiro, PA, Raposo, M. Generation of photon orbital angular momentum and its application in space division multiplexing. Photonics 2023;10:664. https://doi.org/10.3390/photonics10060664.Suche in Google Scholar

13. Kim, KS. On the evolution of PON-based FTTH solutions. Inf Sci 2003;149:21–30. https://doi.org/10.1016/S0020-0255(02)00241-4.Suche in Google Scholar

14. Li, L, Xiao-Bo, G, Jing, L. Analysis of performance for 100 Gbit/s dual-polarization QPSK modulation format system. J Opt Commun 2016;37:93–101. https://doi.org/10.1515/joc-2015-0016.Suche in Google Scholar

15. Xia, C. Optical fibers for space-division multiplexed transmission and networking. University of Central Florida; 2015. https://stars.library.ucf.edu/etd/735.Suche in Google Scholar

16. Puttnam, BJ, Rademacher, G, Luís, RS. Space-division multiplexing for optical fiber communications. Optica 2021;8:1186–203. https://doi.org/10.1364/OPTICA.427631.Suche in Google Scholar

17. Liu, Y, Xu, K, Wang, S, Shen, W, Xie, H, Wang, Y, et al.. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat Commun 2019;10:1–7. https://doi.org/10.1038/s41467-019-11196-8.Suche in Google Scholar PubMed PubMed Central

18. Ikhsan, DM, Wellem, T. Simulasi skema modulasi 1024-QAM dan 4096-QAM pada sistem komunikasi digital. J. Indones Manaj Inform dan Komun 2023;4:1356–64. https://doi.org/10.35870/JIMIK.V4I3.321.Suche in Google Scholar

19. Adarsha, M, Malathi, S. Effective utilization of channel spacing in Elastic Optical Network for 400 Gb/s transmissions. In: Futuristic communication and network technologies. VICFCNT 2020. Lecture Notes in Electrical Engineering. Springer Singapore; 2022, vol 792:619–26 pp. https://doi.org/10.1007/978-981-16-4625-6_61.Suche in Google Scholar

20. Zhu, Y, Zou, K, Chen, Z, Zhang, F. 224 Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle single-sideband direct detection transmission over 160 km SSMF. J Lightwave Technol 2017;35:1557–65. https://doi.org/10.1109/JLT.2017.2650566.Suche in Google Scholar

21. Şenyuva, RV. Union bounds on the symbol error probability of LoRa modulation for flat Rician block fading channels. Phys Commun 2023;58:102012. https://doi.org/10.1016/J.PHYCOM.2023.102012.Suche in Google Scholar

22. Rueda, L. A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes. Pattern Recogn 2005;38:1197–207. https://doi.org/10.1016/J.PATCOG.2004.12.002.Suche in Google Scholar

23. Mansour, MA, Ali, AM, Marty, F, Bourouina, T, Gaber, N. Optical fibers use in on-chip fabry–pérot refractometry to achieve high Q-factor: modeling and experimental assessment. Photonics 2024;11:852. https://doi.org/10.3390/PHOTONICS11090852.Suche in Google Scholar

24. Andrews, LC, Beason, MK. Analysis of probability density function models. Laser Beam Propag. Random Media New Adv Top. 2023. https://doi.org/10.1117/3.2643989.CH5.Suche in Google Scholar

25. Aksenov, V, Dudorov, V, Kolosov, V, Pogutsa, C. Optical communication in a turbulent atmosphere via orbital angular momentum of a laser beam. II. Symbol error rate in a data line. Appl Opt 2024;63:7485. https://doi.org/10.1364/AO.530548.Suche in Google Scholar

26. Zhang, Z, Fang, J, Lin, J, Zhao, S, Xiao, F, Wen, J. Improved upper bound on the complementary error function. Electron Lett 2020;56:663–5. https://doi.org/10.1049/EL.2020.0979.Suche in Google Scholar

27. Elsayed, EE. Performance enhancement of atmospheric turbulence channels in DWDM-FSO PON communication systems using M-ary hybrid DPPM-M-PAPM modulation schemes under pointing errors, ASE noise and interchannel crosstalk. J Opt 2024:1–17. https://doi.org/10.1007/S12596-024-01908-9/METRICS.Suche in Google Scholar

28. Elsayed, EE. Investigations on modified OOK and adaptive threshold for wavelength division multiplexing free-space optical systems impaired by interchannel crosstalk, atmospheric turbulence, and ASE noise. J Opt 2024:1–14. https://doi.org/10.1007/S12596-024-01929-4/METRICS.Suche in Google Scholar

29. Simon, DS, Jaeger, G, Sergienko, AV. Quantum science and technology. Cham: Springer; 2017.Suche in Google Scholar

30. Rashed, ANZ, Babu, GH, Ahammad, SH, Sorathiya, V, Hossain, MA, Daher, MG, et al.. Nonlinear wavelength conversion cross phase modulation in fiber systems based on directly modulated laser measured. J Opt Commun 2022;0. https://doi.org/10.1515/JOC-2022-0104.Suche in Google Scholar

31. Saif, S, Lekshmanan, L, Sankar, K, Thomas, T, Pillai, S, Ajayaghosh, A, et al.. All-optical spatial self-phase and cross phase modulation using an NLO active pyrylium dye towards an optical OR gate. ChemPhotoChem 2025. https://doi.org/10.1002/CPTC.202400334.Suche in Google Scholar

32. Finot, C, Chaussard, F, Boscolo, S. Simple guidelines to predict self-phase modulation patterns. J Opt Soc Am B 2018;35:3143. https://doi.org/10.1364/JOSAB.35.003143.Suche in Google Scholar

33. Bhusari, SN, Deshmukh, VU, Jagdale, SS. Analysis of self-phase modulation and four-wave mixing in fiber optic communication. In: International conference on automatic control and dynamic optimization techniques, ICACDOT 2016. Pune: Institute of Electrical and Electronics Engineers Inc.; 2016:798–803 pp.10.1109/ICACDOT.2016.7877697Suche in Google Scholar

34. N Rani, SS Dhayal, V Vinita. Investigating impact of attenuation over fiber optic communication,” Proc – 2022 4th Int Conf Adv Comput Commun Control Networking, ICAC3N 2022:1842–8. https://doi.org/10.1109/ICAC3N56670.2022.10074078.Suche in Google Scholar

35. Yangzhang, X, Lavery, D, Bayvel, P. Inter-Channel interference in non-linear frequency-division multiplexed networks on fibre links with lumped amplification. 2019 Conf Lasers Electro-Optics Eur Eur Quant Electr Conf CLEO/Europe-EQEC 2019 2019:1. https://doi.org/10.1109/CLEOE-EQEC.2019.8873035.Suche in Google Scholar

36. Payal, Kumar, S. Nonlinear impairments in fiber optic communication systems: analytical review. Commun Comput Inf Sci 2018;958:28–44. https://doi.org/10.1007/978-981-13-3804-5-3.Suche in Google Scholar

37. Moreolo, MS, Fàbrega, JM, Nadal, L. Sliceable BVT evolution towards programmable multi-Tb/s networking. Electron 2019;8:2–11. https://doi.org/10.3390/electronics8121476.Suche in Google Scholar

38. Adarsha, M, Malathi, S, Kumar, S, Sangeetha, RG. 1 Tbps data rate transmission using the Super Channel in the flexi grid network. Int J Commun Antenna Propag 2023;13:89–97. https://doi.org/10.15866/irecap.v13i2.22924.Suche in Google Scholar

39. Sambo, N, Castoldi, P, D’Errico, A, Riccardi, E, Pagano, A, Moreolo, MS, et al.. Next generation sliceable bandwidth variable transponders. IEEE Commun Mag 2015;53:163–71. https://doi.org/10.1109/MCOM.2015.7045405.Suche in Google Scholar

40. Thangaraj, J. Review and analysis of elastic optical network and sliceable bandwidth variable transponder architecture. Opt Eng 2019;57:110802. https://doi.org/10.1117/1.OE.57.11.110802.Suche in Google Scholar

41. Hui, R. Application of high-speed DSP in optical communications. In: Introduction to fiber-optic communications. Academic Press; 2020:497–553 pp.10.1016/B978-0-12-805345-4.00011-1Suche in Google Scholar

42. Ly-Gagnon, DS, Tsukamoto, S, Katoh, K, Kikuchi, K. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J Lightwave Technol 2006;24:12–21. https://doi.org/10.1109/jlt.2005.860477. https://ieeexplore.ieee.org/document/1589027.Suche in Google Scholar

43. Radovic, M, Sgambelluri, A, Cugini, F, Sambo, N. Super-channel spectrum saving optimization procedure in elastic optical networks. J Opt Commun Netw 2023;15:68–77. https://doi.org/10.1364/JOCN.475596.Suche in Google Scholar

44. Onohara, K, Sugihara, T, Miyata, Y, Sugihara, K, Kubo, K, Yoshida, H, et al.. Soft-decision forward error correction for 100 Gb/s digital coherent systems. Opt Fiber Technol 2011;17:452–5. https://doi.org/10.1016/j.yofte.2011.09.005.Suche in Google Scholar

45. Yang, J, Wang, H. Research on high-speed multi-modulation coherent optical communication technology. Fourth Int Conf Opt Commun Technol (ICOCT 2024) 2024:75. https://doi.org/10.1117/12.3050500.Suche in Google Scholar

46. Buchali, F, Klekamp, A, Schmalen, L, Drenski, T. Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission. In: Optical fiber communication conference. San Francisco, CA: IEEE; 2020:1–3 pp.Suche in Google Scholar

47. Sharma, D, Prajapati, YK, Tripathi, R. Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech Rev Inst Electron Telecommun Eng 2020;37:36–55. https://doi.org/10.1080/02564602.2018.1557569.Suche in Google Scholar

48. Maher, R, Xu, T, Galdino, L, Sato, M, Alvarado, A, Shi, K, et al.. Spectrally shaped DP-16QAM Super-Channel transmission with multi-channel digital back-propagation. Sci Rep 2015;5. https://doi.org/10.1038/SREP08214.Suche in Google Scholar

49. Sharma, D, Prajapati, YK, Tripathi, R. Spectrally efficient 1.55 Tb/s Nyquist-WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Opt Eng 2018:57;076102. https://doi.org/10.1117/1.OE.57.7.076102 10.1117/1.OE.57.7.076102Suche in Google Scholar

Received: 2025-03-10
Accepted: 2025-06-12
Published Online: 2025-07-08

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0084/pdf
Button zum nach oben scrollen