Startseite Parallel Mach–Zehnder interferometer-based optical ALUs for high-efficiency computing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Parallel Mach–Zehnder interferometer-based optical ALUs for high-efficiency computing

  • Kamal Kishor Upadhyay ORCID logo EMAIL logo
Veröffentlicht/Copyright: 10. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents a novel approach for designing full adder and subtractor functionalities within the optical domain. By leveraging cutting-edge optical technologies, the proposed model achieves a high-quality factor of 60.70 and an extinction ratio of 29.80, outperforming existing methodologies. Furthermore, the model requires only 14 optical cost units, making it a highly efficient and cost-effective solution for optical computing. This study provides an in-depth discussion on the design principles, theoretical analysis, and experimental validation, demonstrating its potential for future high-performance optical computing applications.


Corresponding author: Kamal Kishor Upadhyay, Department of ECE, JSS Academy of Technical Education, Noida, India, E-mail:

Acknowledgments

Tool using optisim by Rsoft.

  1. Research ethics: No violation.

  2. Informed consent: Not applicable.

  3. Author contributions: Solo author.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: NA.

  6. Research funding: No funding available.

  7. Data availability: The author has all the data which will be available on request by publisher.

References

1. Willner, AE, Khaleghi, S, Chitgarha, MR, Yilmaz, OF. All-optical signal processing. J Lightwave Technol 2014;32:660–80. https://doi.org/10.1109/jlt.2013.2287219.Suche in Google Scholar

2. Dimitriadou, E, Zoiros, KE. All-optical XOR gate using single quantum-dot SOA and optical filter. J Lightwave Technol 2013;31:3813–21. https://doi.org/10.1109/jlt.2013.2287905.Suche in Google Scholar

3. Singh, S, Kaler, RS, Kaur, R. Realization of high speed all-optical half adder and half dubtractor using SOA based logic gates. J Opt Soc Korea 2014;18:639–45. https://doi.org/10.3807/josk.2014.18.6.639.Suche in Google Scholar

4. Landauer, R. Irreversibility and heat generation in the computing process. IBM J Res Dev 1961;5:183–91. https://doi.org/10.1147/rd.53.0183.Suche in Google Scholar

5. Rostami, A, Nejad, HBA, Qartavol, RM, Saghai, HR. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J Quant Electron 2010;46:354–60. https://doi.org/10.1109/jqe.2009.2033253.Suche in Google Scholar

6. Cherri, AK, Al-Zayed, AS. Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and Mach–Zehnder interferometer. Optik 2010;121:1577–85. https://doi.org/10.1016/j.ijleo.2009.02.029.Suche in Google Scholar

7. Chattopadhyay, T. All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit. Opt Fiber Technol 2011;17:558–67. https://doi.org/10.1016/j.yofte.2011.07.013.Suche in Google Scholar

8. Noshad, M, Rostami, A. FWM minimization in WDM optical communication systems using the asymmetrical dispersion-managed fibers. Optik 2012;123:758–60. https://doi.org/10.1016/j.ijleo.2011.06.022.Suche in Google Scholar

9. Rice, JE. An overview of fault models and testing approaches for reversible logic. In: 2013 IEEE pacific rim conference on communications, computers and signal processing (PACRIM). Dept. of Math and Computer Science University of Lethbridge Alberta, Canada: IEEE; 2013:125–30 pp.10.1109/PACRIM.2013.6625461Suche in Google Scholar

10. Bordoloi, K, Theresal, T, Prince, S. Design of all optical reversible logic gates. In: 2014 International conference on communication and signal processing. International Conference on Communication and Signal Processing, April 3-5, 2014, India: IEEE; 2014:1583–8 pp.10.1109/ICCSP.2014.6950115Suche in Google Scholar

11. Rahman, MS, Waheed, S, Bahar, AN. Optimized design of full-subtractor using new SRG reversible logic gates and VHDL simulation. In: 2015 International conference on electrical & electronic engineering (ICEEE), 1st ed. Rajshahi, Bangladesh: IEEE; 2015:69–72 pp.10.1109/CEEE.2015.7428295Suche in Google Scholar

12. Shukla, R, Bose, S, Shukla, S, Upadhyay, KK, Mishra, NK, Singh, AK, et al.. Proposed model of all optical reversible and irreversible modules on a single photonic circuit. J Opt Commun 2020;44:345–9.Suche in Google Scholar

13. Upadhyay, KK. Srivastava S,Mishra NK,Shukla NK. Design and performance analysis of MZI based 2× 2 reversible XNOR logic gate. J Opt Commun 2018;41:235–9.10.1515/joc-2017-0189Suche in Google Scholar

14. Upadhyay, KK, Srivastava, S, Arun, V, Shukla, NK. A novel model of all-optical reversible XOR/XNOR logic gate on a single photonic circuit. Indian J Phys 2019;93. https://doi.org/10.1007/s12648-019-01373-2.Suche in Google Scholar

15. Upadhyay, KK, Srivastava, S, Arun, V, Shukla, NK. Design and performance analysis of all-optical reversible full adder, as ALU. Proc Natl Acad Sci, India, Sect A 2020;90:899–909. https://doi.org/10.1007/s40010-019-00611-w.Suche in Google Scholar

16. Upadhyay, KK, Srivastava, S, Mishra, NK, Shukla, NK. Proposed model of all optical reversible and irreversible modules on a single photonic circuit. J Opt Commun 2020. https://doi.org/10.1515/joc-2020-0249.Suche in Google Scholar

17. Rizk, F, Rizk, D, Rizk, R, Kumar, A. A cost-efficient reversible-based reconfigurable ring oscillator physical unclonable function. In: 2022 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2022:1685–9 pp.10.1109/ISCAS48785.2022.9937354Suche in Google Scholar

18. Bhusare, SS, Yatnalli, V, Shreyas, E, Aithal, S, Jain, GA, Sreekaar, O. Optimized reversible arithmetic and logic unit. In: International Conference on Communication and Intelligent Systems. Singapore: Springer Nature; 2022:641–53 pp.10.1007/978-981-99-2100-3_50Suche in Google Scholar

19. Anagha, EG, Jeyachitra, RK. Review on all-optical logic gates: design techniques and classifications–heading toward high-speed optical integrated circuits. Opt Eng 2022;61:060902. https://doi.org/10.1117/1.oe.61.6.060902.Suche in Google Scholar

Received: 2025-02-26
Accepted: 2025-03-11
Published Online: 2025-04-10

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0066/html
Button zum nach oben scrollen