Startseite Design of high nonlinear photonic crystal fiber for ultrashort pulse laser generation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design of high nonlinear photonic crystal fiber for ultrashort pulse laser generation

  • Reem A. Hanoon , Ali H. Abdulhadi und Abdulla K. Abass ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work demonstrates an optimal design for photonic crystal fiber (PCF) as a saturable absorber with high nonlinearity and low confinement losses. Using COMSOL Multiphysics 6.1 as simulation software, the propagation characteristics of the proposed PCF in terms of effective refractive index, effective mode area, chromatic dispersion, confinement loss, and nonlinearity were successfully simulated and examined in detail. A Finite Element Method (FEM) combined with a Perfectly Matched Layer (PML) absorbing boundary condition was applied to evaluate the PCF structure across a broad wavelength range from 1,000 nm to 2,000 nm. The proposed PCF features five concentric rings of air-filled holes symmetrically arranged in a hexagonal structure, with the silica core doped with a uniform level of concentration of 10 % mol of germanium (Ge). Simulation results indicate a remarkably low confinement loss at a wavelength of 1,550 nm, specifically on the order of 5 × 10−7 (dB/m). Additionally, it reveals a high nonlinearity of 11.2 (1/W.Km) coupled with a simultaneously low negative chromatic dispersion of −14.2 (ps/nm.m). This makes it an excellent candidate for various applications involving advanced nonlinear optical systems. Such findings highlight the possibility of the proposed Ge-PCF as a promising saturable absorber for ultrashort pulse laser generation, offering a viable and practical alternative to traditional saturable absorbers in the mid-infrared region.


Corresponding author: Abdulla K. Abass, Laser and Optoelectronics Engineering Department, Laser Engineering Branch, University of Technology – Iraq, Baghdad, Iraq, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: The authors declare that the manuscript was accomplished completely through their individual efforts, without any financial support from any agency or organization.

  7. Data availability: The data that support the findings of this study are available from the corresponding author, [A. K. Abass], upon reasonable request.

References

1. Nyachionjeka, K, Tarus, H, Langat, K. Design of a photonic crystal fiber for optical communications application. Sci Afr 2020;9:e00511. https://doi.org/10.1016/j.sciaf.2020.e00511.Suche in Google Scholar

2. Hossain, MS, Sen, S, Hossain, MM. Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications. Phys Scripta 2021;96:055506. https://doi.org/10.1088/1402-4896/abe323.Suche in Google Scholar

3. Abd-Alhussain, MJ, Rasheed, BG, Fakhri, MA. Solid-core photonic crystal fiber-based nanolayer glucose sensor. J Opt 2024;53:2392–404. https://doi.org/10.1007/s12596-023-01411-7.Suche in Google Scholar

4. Zhao, T, Lian, Z, Benson, T, Wang, X, Zhang, W, Lou, S. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation. Opt Mater (Amst) 2017;73:343–9. https://doi.org/10.1016/j.optmat.2017.07.010.Suche in Google Scholar

5. Dashtban, Z, Salehi, MR, Abiri, E. Supercontinuum generation in near-and mid-infrared spectral region using highly nonlinear silicon-core photonic crystal fiber for sensing applications. Photon Nanostruct: Fundam Appl 2021;46:100942. https://doi.org/10.1016/j.photonics.2021.100942.Suche in Google Scholar

6. Fakhri, MA, Salim, ET, Sulaiman, GM, Albukhaty, S, Ali, HS, Salim, ZT, et al.. Gold nanowires based on photonic crystal fiber by laser ablation in liquid to improve colon biosensor. Plasmonics 2023;18:2447–63. https://doi.org/10.1007/s11468-023-01961-3.Suche in Google Scholar

7. Devika, V, Mani Rajan, MS, Thenmozhi, H, Sharaf, A. Flower core photonic crystal fibres for supercontinuum generation with low birefringent structure for biomedical imaging. J Opt 2023;52:539–47. https://doi.org/10.1007/s12596-022-01002-y.Suche in Google Scholar

8. Devika, V, Mani Rajan, MS, Sharma, M. Diamond core PET-PCF for supercontinuum generation using meager power with very low birefringence. Opt Quant Electron 2022;54:858. https://doi.org/10.1007/s11082-022-04264-9.Suche in Google Scholar

9. Mitu, SA, Ahmed, K, Abdullah, H, Paul, BK, Al-Zahrani, FA, Patel, SK, et al.. Exploring the optical properties of exposed-core-based photonic-crystal fibers. J Comput Electron 2021;20:1260–9. https://doi.org/10.1007/s10825-021-01674-y.Suche in Google Scholar

10. Knight, JC, Birks, TA, Russell, PSJ, Atkin, DM. All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 1996;21:1547–9. https://doi.org/10.1364/OL.21.001547.Suche in Google Scholar PubMed

11. Knight, JC, Birks, TA, Russell, PSJ, de Sandro, JP. Properties of photonic crystal fiber and the effective index model. J Opt Soc Am A 1998;15:748–52. https://doi.org/10.1364/JOSAA.15.000748.Suche in Google Scholar

12. Broeng, J, Mogilevstev, D, Barkou, SE, Bjarklev, A. Photonic crystal fibers: a new class of optical waveguides. Opt Fiber Technol 1999;5:305–30. https://doi.org/10.1006/ofte.1998.0279.Suche in Google Scholar

13. Van Le, H, Nguyen, HT, Nguyen, AM, Buczyński, R, Kasztelanic, R. Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Phys 2018;28:115106. https://doi.org/10.1088/1555-6611/aad93a.Suche in Google Scholar

14. Chemnitz, M, Gaida, C, Gebhardt, M, Stutzki, F, Kobelke, J, Tünnermann, A, et al.. Carbon chloride-core fibers for soliton mediated supercontinuum generation. Opt Express 2018;26:3221–35. https://doi.org/10.1364/oe.26.003221.Suche in Google Scholar

15. Churin, D, Nguyen, TN, Kieu, K, Norwood, RA, Peyghambarian, N. Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2. Opt Mater Express 2013;3:1358–64. https://doi.org/10.1364/ome.3.001358.Suche in Google Scholar

16. Dinh, QH, Pniewski, J, Van, HL, Ramaniuk, A, Long, VC, Borzycki, K, et al.. Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses. Appl Opt 2018;57:3738–46. https://doi.org/10.1364/ao.57.003738.Suche in Google Scholar

17. Van Lanh, C, Hoang, VT, Long, VC, Borzycki, K, Xuan, KD, Quoc, VT, et al.. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Phys 2019;29:075107. https://doi.org/10.1088/1555-6611/ab2115.Suche in Google Scholar

18. Pandey, SK, Singh, S, Maurya, JB, Verma, RN, Prajapati, YK. Design of a broadband dispersion compensated ultra-high nonlinear photonic crystal fiber. Opt Quant Electron 2022;54:503. https://doi.org/10.1007/s11082-022-03888-1.Suche in Google Scholar

19. Ademgil, H, Haxha, S. Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik (Stuttg) 2016;127:6653–60. https://doi.org/10.1016/j.ijleo.2016.04.137.Suche in Google Scholar

20. Van Le, H, Hoang, VT, Nguyen, HT, Long, VC, Buczynski, R, Kasztelanic, R. Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene. Opt Quant Electron 2021;53. https://doi.org/10.1007/s11082-021-02820-3.Suche in Google Scholar

21. Thi, TN, Trong, DH, Le Tran, BT, Van, TD, Van, LC. Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation. J Opt 2022;51:678–88. https://doi.org/10.1007/s12596-021-00802-y.Suche in Google Scholar

22. Van, LC, Anuszkiewicz, A, Ramaniuk, A, Kasztelanic, R, Xuan, KD, Long, VC, et al.. Supercontinuum generation in photonic crystal fibres with core filled with toluene. J Opt 2017;19:125604. https://doi.org/10.1088/2040-8986/aa96bc.Suche in Google Scholar

23. Van Lanh, C, Hoang, VT, Long, VC, Borzycki, K, Xuan, KD, Quoc, VT, et al.. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Phys 2019;29. https://doi.org/10.1088/1555-6611/ab2115.Suche in Google Scholar

24. Shakaty, AA, Hmood, JK, Mhdi, BR. Graphene-based saturable absorber for pulsed fiber laser generation. In: Journal of Physics: Conference Series. IOP Publishing Ltd; 2021.10.1088/1742-6596/1795/1/012048Suche in Google Scholar

25. Hassan, H, Salman, AA, Munshid, MA, Al-Janabi, A. Passive Q-switching using Lead Sulfide suspension as a saturable absorber in 1.5 μm region. Opt Fiber Technol 2019;52. https://doi.org/10.1016/j.yofte.2019.101969.Suche in Google Scholar

26. Hassan, H, Munshid, MA, Al-Janabi, A. L-band dual wavelength passively Q-switched erbium-doped fiber laser based on tellurium oxide nanoparticle saturable absorber. Laser Phys 2020;30. https://doi.org/10.1088/1555-6611/ab5a87.Suche in Google Scholar

27. Abdulhadi, AH, Al-Janabi, A. Conserved spacing multi-wavelength mode-locked erbium-doped fiber laser based on barium titanate saturable absorber. Optik (Stuttg) 2022;264:169404. https://doi.org/10.1016/j.ijleo.2022.169404.Suche in Google Scholar

28. Abdalhadi, AH, Salman, AM, Faris, RA, Al-Janabi, A. Titania-carbon nanocomposite as a saturable absorber for generation passively ytterbium-mode locked pulses. Opt Mater 2021;112:110728. https://doi.org/10.1016/j.optmat.2020.110728.Suche in Google Scholar

29. Shakir Al-Hiti, A, Hassan, H, Yasin, M, Harun, SW. Passively Q-switched 2 µm fiber laser with WO3 saturable absorber. Opt Fiber Technol 2023;75:103193. https://doi.org/10.1016/j.yofte.2022.103193.Suche in Google Scholar

30. Jasem, IN, Abdullah, HH, Abdulrazzaq, MJ. Passively Q-switched erbium-doped fiber laser based on two-dimensional boron carbide nanoparticles as saturable absorber. Opt Quant Electron 2024;56:571. https://doi.org/10.1007/s11082-023-06228-z.Suche in Google Scholar

31. Jasem, IN, Abdullah, HH, Jalal Abdulrazzaq, M. Dual-wavelength passively Q-switched erbium-doped fiber laser incorporating calcium carbonate nanoparticles as saturable absorber. J Nanotechnol 2023;2023:8858582. https://doi.org/10.1155/2023/8858582.Suche in Google Scholar

32. Yuan, J, Wang, X, Liu, Y, Xin, Y, Zhao, Z, Du, B, et al.. Excellent nonlinear absorption properties of 2D germanium nanosheets in the infrared band. Opt Mater 2022;125. https://doi.org/10.1016/j.optmat.2022.112115.Suche in Google Scholar

33. Sohn, BU, Monmeyran, C, Kimerling, LC, Agarwal, AM, Tan, DTH. Kerr nonlinearity and multi-photon absorption in germanium at mid-infrared wavelengths. Appl Phys Lett 2017;111. https://doi.org/10.1063/1.4990590.Suche in Google Scholar

34. Zhao, R, Qiu, J, Sun, S, Sui, Z, Yang, F, Zhang, H, et al.. The nonlinear optical property of germanium saturable absorber and its application in normal dispersion Er-doped fiber laser. Infrared Phys Technol 2022;127. https://doi.org/10.1016/j.infrared.2022.104445.Suche in Google Scholar

35. Zhao, R, Zhao, X, Sun, S, Zhang, Y, Sui, Z, Yang, F, et al.. Nonlinear optical characteristics of germanium and its application for generating bound state solitons within Er-doped fiber laser. Results Phys 2023;51. https://doi.org/10.1016/j.rinp.2023.106604.Suche in Google Scholar

36. Currie, M, Caldwell, JD, Bezares, FJ, Robinson, J, Anderson, T, Chun, H, et al.. Quantifying pulsed laser induced damage to graphene. Appl Phys Lett 2011;99. https://doi.org/10.1063/1.3663875.Suche in Google Scholar

37. Agustsson, R, Arab, E, Murokh, A, O’Shea, B, Ovodenko, A, Pogorelsky, I, et al.. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-µm laser. Opt Mater Express 2015;5:2835–42. https://doi.org/10.1364/ome.5.002835.Suche in Google Scholar

38. Yang, CC, Cheng, CH, Chen, TH, Lin, YH, Tseng, WH, Chang, PH, et al.. Ultrathin amorphous Ge film enabling stabilized femtosecond fiber laser pulsation. Opt Laser Technol 2021;136. https://doi.org/10.1016/j.optlastec.2020.106761.Suche in Google Scholar

39. Wang, Q, Kang, J, Wang, P, He, J, Liu, Y, Wang, Z, et al.. Broadband saturable absorption in germanene for mode-locked Yb. Er, and Tm fiber lasers 2022;11:3127–37. https://doi.org/10.1515/nanoph-2022-0161.Suche in Google Scholar PubMed PubMed Central

40. Zhao, J, Ruan, S, Yan, P, Zhang, H, Yu, Y, Wei, H, et al.. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. 2013. Downloaded From: http://spiedigitallibrary.org/ on 11/28/2013. Terms of Use: http://spiedl.org/terms.10.1117/1.OE.52.10.106105Suche in Google Scholar

41. Gao, L, Zhu, T, Huang, W, Luo, Z. Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion. IEEE Photon J 2015;7. https://doi.org/10.1109/JPHOT.2015.2402594.Suche in Google Scholar

42. Yan, P, Lin, R, Chen, H, Zhang, H, Liu, A, Yang, H, et al.. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photon Technol Lett 2015;27:264–7. https://doi.org/10.1109/LPT.2014.2361915.Suche in Google Scholar

43. Liu, Z-B, He, X, Wang, DN. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt Lett 2011;36:3024–6. https://doi.org/10.1364/ol.36.003024.Suche in Google Scholar PubMed

44. Hanoon, RA, Abdulhadi, AH, Abass, AK. Dual-wavelength mode-locked erbium fiber laser utilizing a Ge-PCF saturable absorber. Appl Opt 2024;63:8124–30. https://doi.org/10.1364/AO.538611.Suche in Google Scholar

45. Malitson, IH. Interspecimen comparison of the refractive index of fused silica. Josa 1965;55:1205–9. https://doi.org/10.1364/josa.55.001205.Suche in Google Scholar

46. James, W. Fleming. Dispersion in GeO2–SiO2 glasses. Appl Opt 1984;23:4486–93.10.1364/AO.23.004486Suche in Google Scholar PubMed

47. Wemple, SH, Pinnow, DA, Rich, TC, Jaeger, RE, Van Uitert, LG. Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations. J Appl Phys 1973;44:5432–7. https://doi.org/10.1063/1.1662170.Suche in Google Scholar

48. Hammond, CR. Silica-based binary glass systems: wavelength dispersive properties and composition in optical fibres. Opt Quant Electron 1978;10:163–70. https://doi.org/10.1007/bf00620007.Suche in Google Scholar

49. Prajapati, YK, Srivastava, VK, Singh, V, Saini, JP. Effect of germanium doping on the performance of silica based photonic crystal fiber. Optik (Stuttg) 2018;155:149–56. https://doi.org/10.1016/j.ijleo.2017.10.178.Suche in Google Scholar

50. Hossain, M, Ahsan, S, Sikder, N, Rahaman, E, Al-Mamun Bulbul, A, Mondal, HS. High birefringence and broadband dispersion compensation photonic crystal fiber. J Opt Commun 2023;44:S577–87. https://doi.org/10.1515/joc-2020-0140.Suche in Google Scholar

51. Kumar Pandey, S, Kumar Prajapati, Y, Maurya, JB. Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results in Optics 2020;1. https://doi.org/10.1016/j.rio.2020.100024.Suche in Google Scholar

52. Amiri, IS, Khalek, MA, Chakma, S, Paul, BK, Ahmed, K, Dhasarathan, V, et al.. Design of Ge20Sb15Se65 embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik (Stuttg) 2019;184:63–9. https://doi.org/10.1016/j.ijleo.2019.01.006.Suche in Google Scholar

53. Akira, W, Okude, S, Sakai, T, Yamauchi, R. GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers. Electron Commun Jpn (Part I: Commun) 1996;79:12–9.10.1002/ecja.4410791102Suche in Google Scholar

Received: 2024-08-23
Accepted: 2024-12-11
Published Online: 2025-01-24

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2024-0209/html
Button zum nach oben scrollen