Startseite An All-Optical System for Implementing Integrated Hadamard-Pauli Quantum Logic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An All-Optical System for Implementing Integrated Hadamard-Pauli Quantum Logic

  • Baishali Sarkar EMAIL logo und Sourangshu Mukhopadhyay
Veröffentlicht/Copyright: 2. Juli 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In quantum optical computing both of Pauli X, Y, Z gates and Hadamard gate are essential and important issues. Several proposals are given for addressing these issues. In this paper, the authors propose polarization encoded all-optical schemes which implement Hadamard logic, Pauli X, Pauli Y and Pauli Z gates followed by Hadamard logic gate separately. An integrated scheme is also proposed where three Pauli gates (X, Y and Z) followed by a single Hadamard gate is developed using polarization encoding mechanism. The outputs of the proposed systems follow the truth tables of the respective operations exactly. As the systems use the polarization character of light, so fully quantum optical operations with superfast speed are achieved.

References

1. Ghatak A, Thyagarajan K. Optical electronics. Cambridge: Cambridge University Press, 1991:461.Suche in Google Scholar

2. Yariv A, Yeh P. Photonics. UK: Oxford University Press, 2007:406.Suche in Google Scholar

3. Takeda K, Hoshina T, Takeda H, Tsurumi T. Electro-optic effect of lithium niobate in piezoelectric resonance. J Appl Phys. 2012;112:124105.Suche in Google Scholar

4. DiVincenzo DP, Bacon D, Kempe J, Burkard G, Whaley KB. Universal quantum computation with the exchange interaction. Nature. 2000;408:339–4.Suche in Google Scholar

5. Sen S, Mukhopadhyay S. Reduction of VΠ voltage of electro optic modulator by the oblique end cutting and multi-rotation jointly. Opt Laser Technol. 2014;59:19–5.Suche in Google Scholar

6. Barz S, Fitzsimons JF, Kashefi E, Walther P. Experimental verification of quantum computation. Nat Phys. 2013;9:727.Suche in Google Scholar

7. Duan L-M, Raussendorf R. Efficient quantum computation with probabilistic quantum gates. Phys Rev Lett. 2005;95:080503.Suche in Google Scholar

8. Rabiei P, Ma J, Khan S, Chiles J, Fathpour S. Heterogeneous lithium niobate photonics on silicon substrates. Opt Express. 2013;21:25573–9.Suche in Google Scholar

9. Mukhopadhyay S. Role of optics in super-fast information processing. Indian J Phys. 2010;84:1069.Suche in Google Scholar

10. Kim H, Bose R, Shen TC, Solomon GS, Waks E. A quantum logic gate between a solid state quantum bit and a photon. Nat Photonics. 2013;7:373–5.Suche in Google Scholar

11. Sarkar B, Mukhopadhyay S. An all-optical scheme for implementing an integrated Pauli X, Y and Z quantum gates with optical switches. J Optics. 2017;46:143–6.Suche in Google Scholar

12. Dey S, Mukhopadhyay S. Approach of implementing phase encoded quantum square root of NOT gate. ElectronicsLetters. 2017;53:1375–3.Suche in Google Scholar

13. Dey S, Mukhopadhyay S. All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material. J Nonlinear Opt Phys Mater. 2016;25:1650012–11.Suche in Google Scholar

14. Soeken M, Miller DM, Drechsler R. Quantum circuits employing roots of the Pauli matrices. Phys Rev A. 2013;88:042322.Suche in Google Scholar

15. Dimitriadou E, Zoiros KE. On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–zehnder interferometer. Opt Laser Technol. 2012;44:600–8.Suche in Google Scholar

16. Wenzler JS, Dunn T, Toffoli T, Mohanty P. A Nano mechanical Fredkin Gate. Nano Lett. 2014;14:89–5.Suche in Google Scholar

17. Gao S, Wang X, Xie Y, Hu P, Yan Q. Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding. Opt Lett. 2015;40:1448.Suche in Google Scholar

18. O’Brien, Pryde JL, White AG, Ralph TC, Branning D. Demonstration of an all-optical quantum controlled-NOT gate. Nature. 2003;426:264.Suche in Google Scholar

Received: 2019-04-08
Accepted: 2019-06-11
Published Online: 2019-07-02
Published in Print: 2023-04-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Devices
  3. Dual-Buffer-Based Optical Datacenter Switch Design
  4. Fibers
  5. Influence of Temperature on the Chromatic Dispersion of Photonic Crystal Fiber by Infiltrating the Air Holes with Water
  6. Performance Analysis of 80 GHz-Millimeter Wave Radio over Dispersive Fiber
  7. Lasers
  8. Design and Analysis of Static Characteristics of VCSEL at 1160 nm for Optical Interconnects
  9. Measurements
  10. Measurements of the dispersion, the dispersion slope and nonlinear coefficients of photonic crystal fibers based on degenerate four-wave mixing (FWM)
  11. Networks
  12. Research on CLIB Routing and Spectrum Allocation Algorithm in Elastic Optical Networks
  13. Performance Evaluation of Hybrid Optical Amplifier for Ultra Dense Wavelength Division Multiplexed Optical Network at Narrow Channel Spacing
  14. Systems
  15. FPGA Implementation of a Novel Construction of Optical Zero-Correlation Zone Codes for OCDMA Systems
  16. Work on the Evaluation Parameters of Serial and Parallel Relay-Assisted FSO System
  17. Performance Analysis of a Non-Hermitian OFDM Optical DQPSK FSO Link over Atmospheric Turbulent Channel
  18. Hybrid Optical Amplifier for Flat Gain in Super Dense Wavelength Division Multiplexed (SDWDM) System
  19. An All-Optical System for Implementing Integrated Hadamard-Pauli Quantum Logic
  20. Phonon Polariton Dispersion in Metal-Doped Nanocomposite Superlattice System
  21. Radio over Fibre Transport of Alamouti-coded MIMO Signals with Self-Recovery Capability
  22. DP-QPSK Technique for Ultra-high Bit-rate DWDM FSO System
  23. Design and Analysis of Alphabetical Slots of Patch Antenna for Mobile Optical Communication at 60 GHz
  24. Bidirectional MDRZ Downstream and NRZ OOK Upstream SS-WDM RoFSO Communication System
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2019-0093/html
Button zum nach oben scrollen