Startseite Cost Efficient 4 × 2.5 Gb/s Transparent WDM Ring Network using DML and MetroCor Fiber for Long Reach Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cost Efficient 4 × 2.5 Gb/s Transparent WDM Ring Network using DML and MetroCor Fiber for Long Reach Applications

  • Anu Sheetal EMAIL logo und Harjit Singh
Veröffentlicht/Copyright: 24. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we analyze the performance of the 4 × 2.5 Gb/s wavelength division multiplexing (WDM) transparent metro ring network comprising of one network node and eight access nodes. Here, the power requirement of 360 km ring network has been evaluated using the optical signal to noise ratio (OSNR), Q-factor, inter-symbol interference (ISI) and power penalty. The metro network utilized the cost-effective directly modulated laser (DML) and a negative dispersion fiber called MetroCor in order to give enhanced performance in terms of Q-factor. The power requirement of the network is optimized for the signals over SMF-28 and MetroCor fibers. Also, the comparison is drawn between uncompensated and compensated (with -post and -symmetrical) SMF-28 fibers in the metro environment. The excellent value of Q-factor is obtained at all the nodes. Also, the results show higher OSNR values in the metro environment. Although, smaller power penalties are detected for nodes closer to the network node, but distant nodes require higher power for better transmission.

References

1. Iannone PP, Reichmann KC, Smiljanic A, Frigo NJ, Gnauck AH, Spiekman LH, et al. A transparent WDM network featuring shared virtual rings. J Lightwave Technol 2000;18:1955–1963.10.1109/50.908802Suche in Google Scholar

2. Reichmann KC, Iannone PP, Birk M, Frigo NJ, Barbier D, Cassagnettes C, et al. An eight-wavelength 160km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifier. IEEE Photonics Technol Lett 2001;13:1130–1132.10.1109/68.950758Suche in Google Scholar

3. Yu Y-L, Liaw S-K, Lee Y-W. Eye-diagram and Q factor evaluation of fiber ring laser in lightwave transmission. Opt Fiber Technol 2016;31:55–60.10.1016/j.yofte.2016.06.002Suche in Google Scholar

4. Tomkos I, Chowdhury D, Conradi J, Culverhouse D, Ennser K, Giroux C, et al. Demonstration of negative dispersion fibers for DWDM metropolitan area networks. IEEE J Sel Topics Quantum Electron 2001;17:439–460.10.1109/2944.962268Suche in Google Scholar

5. Chung HS, Jang YG, Chung YC. Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network. IEEE Photonics Technol Lett 2003;15:1306–1308.10.1109/LPT.2003.814900Suche in Google Scholar

6. Tomkos I, Hesse R, Madamopoulos N, Friedman C, Antoniades N, Hallock B, et al. Transport performance of an 80-Gb/s WDM regional area transport ring network utilizing directly modulated lasers. J Lightwave Technol 2002;20:562–573.10.1109/50.996575Suche in Google Scholar

7. Tomkos I, Hesse R, Vodhanel R, Boskovic A. Metro network utilizing 10-Gb/s directly modulated lasers and negative dispersion fiber. IEEE Photonics Technol Lett 2002;14:408–410.10.1109/68.986829Suche in Google Scholar

8. Yu J, Jia Z, Huang M-F, Haris M, Ji PN, Wang T, et al. Application of 40-Gb/s chirp-managed laser in access and metro networks. J Lightwave Technol 2009;27:253–265.10.1109/JLT.2008.2006064Suche in Google Scholar

9. Singh A, Sharma AK, Kamal TS, Sharma M. Simulative investigations of power penalty for DWDM link in the presence of FWM. Optik 2009;120:934–940.10.1016/j.ijleo.2008.02.002Suche in Google Scholar

10. Hinton K, Stephens T. Modeling high speed optical transmission systems. IEEE J Sel Areas Commun 1993;11:380–392.10.1109/49.219553Suche in Google Scholar

11. Mahajan A, Sheetal A, Singh J. Comparison of 32×2.5Gb/s DWDM metropolitan area network using SMF-28 and MetroCor fiber using DML-1 and DML-2 sources. ISP J Electron Eng 2011;1:10–15.Suche in Google Scholar

12. Corning MetroCor optical fiber: Product Information, 2002; 1–4.Suche in Google Scholar

13. Agrawal GP. Nonlinear fiber optics. New York: Academic Press, 2007.10.1016/B978-012369516-1/50011-XSuche in Google Scholar

Received: 2016-10-25
Accepted: 2017-03-06
Published Online: 2017-03-24
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2016-0146/html
Button zum nach oben scrollen