Startseite Influence of Transmitting Pointing Errors on High Speed WDM-AMI-Is-OWC Transmission System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Transmitting Pointing Errors on High Speed WDM-AMI-Is-OWC Transmission System

  • Abdallah Ahmad Shatnawi EMAIL logo , Mohd Nazri Bin Mohd Warip und Anuar Mat Safar
Veröffentlicht/Copyright: 13. Oktober 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inter-satellite communication is one of the revolutionary techniques that can be used to transmit the high speed date between satellites. However, space turbulences such as transmitting pointing errors play a significant role while designing inter-satellite communication systems. Those turbulences cause shutdown of inter-satellite link due to increase of attenuation during data transmission through link. The present work aims to develop an integrated data transmission system incorporating alternate mark inversion (AMI), wavelength division multiplexing (WDM), and polarization interleaving (PI) scheme for transmitting data 160 Gbps over inter-satellite link of 1,000 km under the influence of space turbulences. The performance of the integrated data transmission of 160 Gbps data up to 1,000 km will be evaluated under the influence of space turbulences by means of signal to noise ratio (SNR), total received power, bit error rate and eye diagram.

References

1. Hecht J. Short history of laser development. Opt Eng 2010;49(9):91002–91002.10.1117/1.3483597Suche in Google Scholar

2. Lutz E, Werner M, Jahn A. Satellite systems for personal and broadband communications. New York: Springer Science & Business Media, 2012.Suche in Google Scholar

3. Chaudhary S, Amphawan A. The role and challenges of free-space optical systems. J Opt Commun 2014;35(4):327–34.10.1515/joc-2014-0004Suche in Google Scholar

4. Chaudhary S, Amphawan A, Nisar K. Realization of free space optics with OFDM under atmospheric turbulence. Opt Int J Light Electron Opt 2014;125(18):5196–8.10.1016/j.ijleo.2014.05.036Suche in Google Scholar

5. Sharma V. High speed CO-OFDM-FSO transmission system. Opt Int J Light Electron Opt 2014;125(6):1761–3.10.1016/j.ijleo.2013.10.010Suche in Google Scholar

6. Amphawan A, Chaudhary S, Chan VWS. 2 × 20 Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. J Eur Opt Soc Rapid Publ Europe ISSN Sep 2014;9:1990–2573.Suche in Google Scholar

7. Amphawan A, Chaudhary S, Neo T-K. Hermite-Gaussian mode division multiplexing for free-space optical interconnects. Adv Sci Lett 2015;21(10):3050–3.10.1166/asl.2015.6532Suche in Google Scholar

8. Amphawan A, Chaudhary S. Free-space optical mode division multiplexing for switching between millimeter-wave picocells. International Conference on Optical and Photonic Engineering (icOPEN2015). International Society for Optics and Photonics, 2015.10.1117/12.2189694Suche in Google Scholar

9. Amphawan A, Chaudhary S, Gupta BB. Secure MDM-OFDM-Ro-FSO system using HG modes. Int J Sensors Wireless Commun Control 2015;5(1):13–18.10.2174/2210327905999150521110316Suche in Google Scholar

10. Amphawan A, Chaudhary S, Din R, Omar MN. 5Gbps HG 0, 1 and HG 0, 3 optical mode division multiplexing for RoFSO. Signal Processing & Its Applications (CSPA), 2015 IEEE 11th International Colloquium on IEEE, 2015.10.1109/CSPA.2015.7225635Suche in Google Scholar

11. Chaudhary S, Samad H, Ahmad J. Mode division multiplexing of LG and HG modes in Ro-FSO. Proc Electr Eng Comp Sci Inform 2015;2(1):304–8.Suche in Google Scholar

12. Amphawan A, Chaudhary S, Elfouly T, Abualsaud K. Optical mode division multiplexing for secure Ro-FSO WLANs. Adv Sci Lett 2015;21(10):3046–9.10.1166/asl.2015.6518Suche in Google Scholar

13. Schulze D, Herman J, Löw S. Formation flight in low-earth-orbit at 150 m distance-AOCS in-orbit experience. SpaceOps 2012;2012:1274713.10.2514/6.2012-1274713Suche in Google Scholar

14. Farid AA, Hranilovic S. Outage capacity optimization for free-space optical links with pointing errors. J Lightwave Technol July 2007;25(7):1702–10.10.1109/JLT.2007.899174Suche in Google Scholar

15. Agrell E, Karlsson M. WDM channel capacity and its dependence on multichannel adaptation models. Optical Fiber Communication Conference, Optical Society of America, 2013.10.1364/OFC.2013.OTu3B.4Suche in Google Scholar

16. Chaudhary S, Bansal P, Lumb M. Effect of beam divergence on WDM-FSO transmission system. Int J Comput Appl May 2014;93(1):28–32.10.5120/16181-5397Suche in Google Scholar

17. Dar R, et al. Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation. J Lightwave Technol 2015;33(5):1044–53.10.1109/JLT.2014.2384998Suche in Google Scholar

18. Bansal U, Kaur K, Chaudhary S. Role of laser linewidth in high speed DWDM system by incorporating duobinary modulation scheme. Int J Comput Appl 2015;109(15):30–2.10.5120/19267-1042Suche in Google Scholar

19. Kaur R, Chaudhary S. Simulative investigation of laser line-width and channel spacing for realization of DWDM systems under the impact of four wave mixing. J Opt Commun 2014;35(2):157–65.10.1515/joc-2013-0152Suche in Google Scholar

20. Girgis L, et al. Optical Gaussons in birefringent fibers and DWDM systems with intermodal dispersion. Rom Rep Phys 2012;64(3):663–71.Suche in Google Scholar

21. Choudhary J, Garia LS, Shahi RS. Comparative analysis of DWDM system using different modulation and dispersion compensation techniques at different bit rates. Int J Adv Res Comput Commun Eng ISSN 2014;3(5):2278–1021.Suche in Google Scholar

22. Harris J, Bailey N. Alternate pulse inversion encoding scheme for serial data transmission. U.S. Patent No. 4,897,854. 30 Jan. 1990.Suche in Google Scholar

23. Chaudhary S, Sharma S. Role of turbulences in WDM-polarization interleaving scheme based inter-satellite communication system. Int J Comput Appl 2014;104(10).10.5120/18235-9224Suche in Google Scholar

24. Chaudhary S, Sharma A. 6 × 20Gbps long reach WDM-PI based high altitude platform inter-satellite communication system. Int J Comput Appl 2015;122(22).10.5120/21861-5192Suche in Google Scholar

25. Chaudhary S, Sharma A, Chaudhary N. 6×20 Gbps hybrid WDM–PI inter-satellite system under the influence of transmitting pointing errors. J Opt Commun 2016. doi:10.1515/joc-2015-0099.Suche in Google Scholar

26. Dailey JM, et al. High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing. Opt Express 2011;19(27):25954–68.10.1364/OE.19.025954Suche in Google Scholar PubMed

27. Arnon S. Performance of a laser satellite network with an optical preamplifier. J. Opt Soc Am April 2005;22(4):708–15.10.1364/JOSAA.22.000708Suche in Google Scholar

Received: 2016-8-23
Accepted: 2016-9-5
Published Online: 2016-10-13
Published in Print: 2017-12-20

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Detectors
  3. Enhanced Performance Analysis of Inter-aircraft Optical Wireless Communication Link Using Array of Photodetectors
  4. Devices
  5. Very Flat Optical Frequency Comb Generation based on Polarization Modulator and Recirculation Frequency Shifter
  6. All-Optical Half-Adder Circuit Based on Beam Interference Principle of Photonic Crystal
  7. Networks
  8. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks
  9. Systems
  10. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology
  11. Performance Investigation of FSO–OFDM Communication Systems under the Heavy Rain Weather
  12. Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System
  13. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link
  14. High-speed and Long-reach Hybrid AMI–WDM–PI Inter-satellite Communication System
  15. Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes
  16. Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
  17. Performance Enhancement of Ultra High Capacity 2.5 Tbps DWDM System Using DCF and Optimized Modulation Format
  18. High Speed Inter-Satellite Communication System by Incorporating Hybrid Polarization-Wavelength Division Multiplexing Scheme
  19. Performance Analysis of Amplify-and-Forward Relaying FSO/SC-QAM Systems over Weak Turbulence Channels and Pointing Error Impairments
  20. Optimizing Parameters of an Optical Link by Using Genetic Algorithms
  21. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link
  22. Theory
  23. A Unified Approach for Calculating Error Rates of 10 Gbps WDM Network in Presence of Higher Order Dispersion
  24. Influence of Transmitting Pointing Errors on High Speed WDM-AMI-Is-OWC Transmission System
  25. Lasers
  26. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF
Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2016-0117/html
Button zum nach oben scrollen