Startseite Optical Time Division Multiplexing Using Terahertz Optical Asymmetric Demultiplexer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical Time Division Multiplexing Using Terahertz Optical Asymmetric Demultiplexer

  • Kamaldeep Kaur EMAIL logo und K. S. Bhatia
Veröffentlicht/Copyright: 20. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, optical time division multiplexing is demonstrated using TOAD (terahertz optical asymmetric demultiplexer), which employs semiconductor optical amplifier (SOA) as nonlinear switching element. The TOAD device in its original configuration is based on Sagnac interferometer (also referred to as nonlinear optical loop mirror – NOLM).

References

1. WatanabeS, OkabeR, FutamiF, HainbergerR, Schmidt-LanghorstC, SchubertC, et al. Novel fiber Kerr-switch with parametric gain: Demonstration of optical demultiplexing and sampling up to 640 Gb/s. Proceedings of ECOC, 2004, Stockholm, Sweden, Post deadline paper Th3.1.6.Suche in Google Scholar

2. JansenSL, HeidM, SpälterS, MeissnerE, WeiskeC-J, SchöplinA, et al. Demultiplexing 160 gb/s OTDM signal to 40 gb/s by FWM in SOA. Electron Lett2002;38:97880. Aug.10.1049/el:20020684Suche in Google Scholar

3. SchubertC, SchmidtC, FerberS, LudwigR, WeberHG. Error free all-optical add-drop multiplexing at 160 gb/s. Electron Lett Jul. 2003;39:10756.Suche in Google Scholar

4. ChouHF, BowersJE, BlumenthalDJ. Compact 160-Gb/s add-drop multiplexing with a 40-Gb/s base-rate. Proceedings of OFC 2004, Los Angeles, CA, Postdeadline paper PDP28.10.1109/LPT.2004.827118Suche in Google Scholar

5. HallinJ, KjellbergT, SwalinT. A 165-gb/s 4:1 multiplexer in INPDHBT technology. J Solid State Circuits Oct. 2006;41:220914.10.1109/JSSC.2006.878114Suche in Google Scholar

6. YamamotoT, YoshidaE, NakazawaM. Ultrafast nonlinear optical loop mirror for demultiplexing 640 gb/s TDM signals. Electron. Lett1998;34:101314.10.1049/el:19980712Suche in Google Scholar

7. WatanabeS, OkabeR, FutamiF, HinbergerR, Schmidt- LanghorstC, SchubertC, et al. Novel fiber kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s. Proceedings of IEEE European Conference on Optical Communication (ECOC), Stockholm, Sweden, 2004, Postdeadline paper Th4.1.6.Suche in Google Scholar

8. OxenløweLK, Gomaz-AgisF, WareC, KurimuraS, MulvadHCH, JeppesenP. 640 Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device. Proceedings of OFC 2008, San Diego, CA, Feb. 24–28, 2008, Paper PDP22.Suche in Google Scholar

9. MulvadHCH, OxenløweLK, GaliliM, ClausenAT, Grüner-NielsenL, JeppesenP. 1.28 Tbit/s single-polarisation OTDM-OOK data generation and demux. Electron Lett Feb. 2009;45:2801.10.1049/el:20090206Suche in Google Scholar

10. AlmeidaVR, BarriosCA, PanepucciRR, LipsonM. All-optical control of light on a silicon chip. Nature2004;431:10814.10.1038/nature02921Suche in Google Scholar PubMed

11. SalemR, FosterMA, TurnerAC, GeraghtyDF, LipsonM, GaetaAL. Signal regeneration using low power four-wave mixing on silicon chip. Nature Photon2008;2:358.10.1038/nphoton.2007.249Suche in Google Scholar

12. LiF, PelusiM, XuD-X, DensmoreA, MaR, JanzS. Error-free all-optical demultiplexing at 160 gb/s via FWM in a silicon nanowire. Opt. Express Feb. 2010;18:3905.Suche in Google Scholar

13. OphirN, GaetaAL, BregmanK, FosterMA, LipsonM, et al. First 80-Gb/s and 160-Gb/s wavelength converted data stream measurements in a silicon waveguide. Proceedings of OFC 2010, San Diego, CA, Mar. 21–6, 2010, Paper OWP5.10.1364/OFC.2010.OWP5Suche in Google Scholar

14. GalilM, MulvadHCH, HUH, PalushaniE, ClausenAT, JeppeneseP. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarization multiplexing. Proceedings of Optical Fiber Conference, 2010, Paper OThV2.10.1364/OFC.2010.OThV2Suche in Google Scholar

15. ClausenAT., et al. 320 to 10 gbit/s demultiplexing using NOLM based on commercially available components. Electron Lett Mar. 2005;41:2656.10.1049/el:20048348Suche in Google Scholar

16. DoranNJ, WoodD. Nonlinear optical loop mirror. Opt Lett Jan. 1998;13:568.10.1364/OL.13.000056Suche in Google Scholar PubMed

17. SokoloffJP, PrucnalPR, GleskI, KaneM. A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon Technol Lett1993;5:78790.10.1109/68.229807Suche in Google Scholar

18. PatelNS, HallKL, RaushenbachKA. 40 Gbits cascadable all-optical logic with an ultrafast nonlinear interferometer. Opt Lett1996;21:14668.10.1364/OL.21.001466Suche in Google Scholar

19. HamiltonSA, RobinsonBS, MurphyTE, SavageSJ, IppenEP. 100 Gb/s optical time-division multiplexed networks. J Light Technol Dec. 2002;20:2086100.10.1109/JLT.2002.806781Suche in Google Scholar

20. NakamuraS, TajimaK, SugimotoY. Experimental investigation on high-speed switching characteristics of a novel symmetric Mach Zehnder all optical switch. Appl Phys Lett1994;65:2835.10.1063/1.112347Suche in Google Scholar

21. NgahR, GhassemlooyZ. Simulation of simultaneous all optical clock extraction and demultiplexing for OTDM packet signal using SMZ switches. European NOC 2004, Eindhoven, June 2004, pp. 43742.Suche in Google Scholar

22. Singh BhatiaK, KalerRS, KamalTS, KaleR. Monitoring and compensation of optical telecommunication channels by using optical add drop multiplexers for optical OFDM system. Journal of optical communication. 2012;33:913. Copyright © 2012 De Grunter. DOI 10.1515/joc–2012–0001.Suche in Google Scholar

23. Singh BhatiaEK, KamalTS, KalerRS. Peak-to-average power ratio reduction using coded signal in optical-orthogonal frequency division multiplexing systems IET optoelectronic. Elsevier Science2012;6:2504. doi: 10.1049/iet-opt.2011.0089. Impact Factor-1.201 Available online at www.ieeexplore.ieee.org.Suche in Google Scholar

24. Singh BhatiaK, KalerRS, KamalTS. Design and simulation of optical-OFDM systems. J Russ Laser Res2012;33:2028. September, 2012, Impact Factor-0.7, Available online at www.springerlink.com.Suche in Google Scholar

25. BhatiaKS, KamalTS, KalerRS.An adaptive compensation scheme-based coded direct detection optical–orthogonal frequency division multiplex (OFDM) system. Computer Electr Eng2012;38:15738, http://dx.doi.org/10.1016/j.compeleceng.2012.06.007, Impact Factor-0.7, Available online at www.sciencedirect.com10.1016/j.compeleceng.2012.06.007Suche in Google Scholar

26. Singh BhatiaK, KalerRS, KamalTS, RandhawaR. Simulative analysis of integrated DWDM and MIMO-OFDM system with OADM. Optik2013;11721. doi:10.1016/j.ijleo.2011.11.081. Impact Factor-0.5, Available online at www.sciencedirect.com.Suche in Google Scholar

Received: 2014-11-12
Accepted: 2015-1-6
Published Online: 2015-3-20
Published in Print: 2015-12-1

©2015 by De Gruyter

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2014-0087/html?lang=de
Button zum nach oben scrollen