Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem
-
L. Marcinkowski
Veröffentlicht/Copyright:
20. Oktober 2010
Abstract
In the paper a balanced Neumann–Neumann algorithm for the reduced HCT finite element discretization on nonmatching meshes is discussed. The overall discretization is done using a mortar technique which is based on the application of an approximate matching condition for the discrete functions. The algorithms are analyzed using the abstract Schwarz framework, proving an almost optimal condition bound which is independent of the parameters of the problem, and depends only logarithmically on the ratio between the subdomain size and the mesh size.
Received: 2010-02-22
Published Online: 2010-10-20
Published in Print: 2010-October
© de Gruyter 2010
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Domain decomposition solvers for nonlinear multiharmonic finite element equations
- An adaptive low-order FE-scheme for Stokes flow with cavitation
- Convergence analysis of finite element methods for H(div;Ω)-elliptic interface problems
- A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem
Schlagwörter für diesen Artikel
mortar method;
finite element;
balancing Neumann–Neumann method
Artikel in diesem Heft
- Domain decomposition solvers for nonlinear multiharmonic finite element equations
- An adaptive low-order FE-scheme for Stokes flow with cavitation
- Convergence analysis of finite element methods for H(div;Ω)-elliptic interface problems
- A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem