Startseite Dynamical low-rank approximation strategies for nonlinear feedback control problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamical low-rank approximation strategies for nonlinear feedback control problems

  • Luca Saluzzi ORCID logo EMAIL logo und Maria Strazzullo
Veröffentlicht/Copyright: 7. November 2025

Abstract

This paper addresses the stabilization of dynamical systems in the infinite horizon optimal control setting using nonlinear feedback control based on State-Dependent Riccati Equations (SDREs). While effective, the practical implementation of such feedback strategies is often constrained by the high dimensionality of state spaces and the computational challenges associated with solving SDREs, particularly in parametric scenarios. To mitigate these limitations, we introduce the Dynamical Low-Rank Approximation (DLRA) methodology, which provides an efficient and accurate framework for addressing high-dimensional feedback control problems. DLRA dynamically constructs a low-dimensional representation that evolves with the problem, enabling the simultaneous resolution of multiple parametric instances in real-time. We propose two novel algorithms to enhance numerical performances: the cascade-Newton–Kleinman method and Riccati-based DLRA (R-DLRA). The cascade-Newton–Kleinman method accelerates convergence by leveraging Riccati solutions from the nearby parameter or time instance, supported by a theoretical sensitivity analysis. R-DLRA integrates Riccati information into the DLRA basis construction to improve the quality of the solution. These approaches are validated through nonlinear one-dimensional and two-dimensional test cases showing transport-like behavior, demonstrating that R-DLRA outperforms standard DLRA and Proper Orthogonal Decomposition-based model order reduction in both speed and accuracy, offering a superior alternative to Full Order Model solutions.

MSC 2010 Classification: 49M41; 76D55; 93C20

Corresponding author: Luca Saluzzi, Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma, 00185, Italy; and INDAM, GNCS Member, Roma , Italy, E-mail: 

Funding source: Metodi di riduzione di modello ed approssimazioni di rango basso per problemi alto-dimensionali

Award Identifier / Grant number: CUP E53C23001670001 (Metodi di riduzione di modello ed approssimazioni di rango basso per problemi alto-dimensionali)

Funding source: European Union – Next Generation EU (PRIN 2022 program (D.D. 104 - 02/02/2022 Ministero dell’Università e della Ricerca))

Award Identifier / Grant number: 20227K44ME (Full and Reduced order modelling of coupled systems: focus on nonmatching methods and automatic learning (FaReX))

Funding source: European Union’s Horizon 2020 (Marie Sk lodowska-Curie Actions Grant)

Award Identifier / Grant number: 872442 (ARIA)

Funding source: ECCOMAS EYIC Grant

Acknowledgement

The authors express their sincere gratitude for the many insightful discussions with Stefano Massei and Cecilia Pagliantini.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: We acknowledge the INdAM - GNCS Project “Metodi di riduzione di modello ed approssimazioni di rango basso per problemi alto-dimensionali” (CUP E53C23001670001). MS thanks the “20227K44ME - Full and Reduced order modelling of coupled systems: focus on nonmatching methods and automatic learning (FaReX)” project – funded by European Union – Next Generation EU within the PRIN 2022 program (D.D. 104 - 02/02/2022 Ministero dell’Università e della Ricerca). This manuscript reflects only the authors’ views and opinions and the Ministry cannot be considered responsible for them. MS acknowledges the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, grant agreement 872442 (ARIA). MS thanks the ECCOMAS EYIC Grant “CRAFT: Control and Reg-reduction in Applications for Flow Turbulence”.

  7. Data availability: The data that support the findings of this study are openly available at https://github.com/saluzzi/DLRA-Feedback-Control.

Appendix A: Additional results on the sensitivity estimates

In this appendix, we collect all the results needed to prove and validate the estimate of Section 3. Section A.1 details the propositions necessary to the proofs of Theorems 2 and 3. In Section A.2, we propose a numerical example validating the theoretical sensitivity analysis.

A.1 Auxiliary results

Proposition 3.

Given a vector field f(t, y) satisfying the one-sided Lipschitz condition (10), then the following estimate holds

(44) y ( t ; y 0 ) y ( t ; y ̃ 0 ) y 0 y ̃ 0 e L t .

Proof.

Let us denote by y 1(t) and y 2(t) the solutions of the ODE with corresponding initial condition y 0 and y ̃ 0 and define Δy(t) = y 1(t) − y 2(t). Then we have

Δ y ( t ) d d t Δ y ( t ) = Δ y ( t ) ( f ( t , y 1 ( t ) ) f ( t , y 2 ( t ) ) ) .

Using the one-sided Lipschitz condition:

Δ y ( t ) ( f ( t , y 1 ( t ) ) f ( t , y 2 ( t ) ) ) L Δ y ( t ) 2 .

Since d d t Δ y ( t ) 2 = 2 Δ y ( t ) d d t Δ y ( t ) , we have

d d t Δ y ( t ) 2 2 L Δ y ( t ) 2 .

By Gronwall’s inequality, we obtain the result. □

Proposition 4.

Given Assumptions 2 (a)–(c), the vector field f(t, y) = A cl(y)y satisfies the one-sided Lipschitz condition (10) in a domain Ω with constant

L = max x Ω logm ( A cl ( x ) ) + L cl max y Ω y .

Proof.

We aim to verify if the function A cl(y)y satisfies condition (10). Let us manipulate the left-hand side of condition (10) to obtain

( x y ) ( A cl ( x ) x A cl ( y ) y ) = ( x y ) A cl ( x ) ( x y ) + ( x y ) ( A cl ( x ) A cl ( y ) ) y .

By the definition of logarithmic norm we obtain

( x y ) A cl ( x ) ( x y ) logm ( A cl ( x ) ) x y 2 ,

while by Assumption 2 (a)

| ( x y ) ( A cl ( x ) A cl ( y ) ) y | L cl y x y 2 .

Considering the maximum in x and y over the domain Ω gives the result. □

Corollary 1.

Given Assumptions 2 (a)–(d), the following estimate holds

y ( t ; y 0 ( μ ) ) y ( t ; y 0 ( μ ̃ ) ) L y 0 μ μ ̃ e L t

with L = max x∈Ωlogm(A cl(x)) + L cl max y∈Ωy‖.

Proof.

By Proposition 4, we know that the function f(t, y) = A cl(y)y satisfies the one-sided Lipschitz condition (10). Applying Proposition 3 and Assumption 2 (d) we obtain the result. □

Proposition 5.

Given Assumption 2 (f), then ‖A cl(y(t))y(t)‖ is decreasing in time.

Proof.

Denoting z(t) = A cl(y(t))y(t), we have

d d t z ( t ) 2 = 2 z ( t ) ( A cl ( y ( t ) ) ) y ( t ) + A ( y ( t ) ) z ( t ) 2 ( logm ( A ( y ) ) + logm ( ( A cl ( y ) ) y ) ) z ( t ) 2 ,

and the result comes from Assumption 2 (f). □

A.2 A numerical validation

In this section, we want to show how the theoretical findings derived in Section 3 can be applied in practice. Let us consider the optimal control problem driven by the following nonlinear reaction–diffusion equation:

(45) d d t y ( t , x ) = σ x x y ( t , x ) + y ( t , x ) 2 + u ( t , x ) , ( t , x ) R + × [ 0,2 ]

with associated cost functional

J ( u , y 0 ) = 0 + Ω | y ( t , x ) | 2 d x + Ω | u ( t , x ) | 2 d x d t .

Fixing σ = 10−3 and performing a semidiscretization via finite difference with N h = 50 grid points, we obtain

y ̇ ( t ) = A ( y ) y ( t ) + u ( t ) ,

where

A ( y ) = σ A 0 + diag ( y y )

with A 0 arising from the discretization of the Laplacian with Neumann boundary conditions, ◦ stands for the Hadamard product and diag(v) indicates a diagonal matrix with the components of the vector v on the main diagonal.

Let us consider a set of parameterized initial conditions

y 0 ( x ; μ ) = μ sin ( π x ) , μ [ 1,10 ] .

We note that in this case A(y) is symmetric for all y R d and the term F is an identity matrix multiplied by a scalar depending on the space discretization. As a result, the closed-loop matrix is symmetric, and all of its eigenvalues are real. Let us denote by λ μ 1 , μ 2 , t 1 , t 2 the maximum eigenvalue of the matrix A μ 2 , t 2 F P μ 1 , t 1 , i.e., the starting closed-loop matrix for the parameter μ 2 at time t 2 using as initial guess P μ 1 , t 1 . Our aim is to verify whenever this value is negative and, hence, P μ 1 , t 1 represents a stabilizing initial guess. We proceed applying the following steps:

  1. we start at initial time from μ 1 = 1 and we solve the following SDRE

    A μ 1 , 0 P μ 1 , 0 + P μ 1 , 0 A μ 1 , 0 P μ 1 , 0 F P μ 1 , 0 = Q

    using the Matlab function icare;

  2. we compute the approximate solution H μ 1 , 0 of the Lyapunov equation (16) by the Matlab function lyap;

  3. we note that

    Δ A μ 1 , μ 2 , 0,0 2 = | μ 1 2 μ 2 2 | diag ( sin ( π x ) ) 2 ,

    where sin ( π x ) = [ sin ( π x 1 ) , , sin ( π x d ) ] ;

  4. condition (15) now reads

    | μ 1 2 μ 2 2 | < c = 1 4 H μ 1 , 0 2 diag ( sin ( π x ) ) 2 ,

    where the right-hand side is equal to 1.0011 in this case. Hence, condition (15) is satisfied if

    Δ μ < 1 + 1 + c 0.4146 .

If we consider Δμ = 0.45, the condition (15) is not satisfied and we note that the maximum eigenvalue of the closed loop matrix A μ 2 , 0 F P μ 1 , 0 is positive ( λ μ 1 , μ 2 , 0,0 = 0.0019 ) , hence P μ 1 , 0 is not a stabilizing initial guess. On the other hand, considering Δμ = 0.4, as expected, P μ 1 , 0 is a stabilizing initial guess ( λ μ 1 , μ 2 , 0,0 = 0.1342 ). This provides a strategy to compute the parameter stepsize to ensure the cascade approach at the initial time.

Now let us consider the time integration with final time T = 0.1 with Δμ = 0.1. In the top-left panel of Figure 10, we compare the behavior in time of the terms g 1 ( t ) = Δ A μ , μ ̃ , t , t (denoted in the plot as Lower Estimate), g 2 ( t ) = L A L y 0 μ μ ̃ e L t (One-sided Upper Estimate) and g 3 ( t ) = 1 2 H μ , t (Upper Estimate). The constants L and L A can be estimated along the trajectories in the following way

L A = max i A ( y μ 1 , t i ) A ( y μ 2 , t i ) y μ 1 , t i y μ 2 , t i ,

L = max i ( A cl ( y μ 1 , t i ) A cl ( y μ 2 , t i ) ) ( y μ 1 , t i y μ 2 , t i ) y μ 1 , t i y μ 2 , t i .

We note that the upper estimate exhibits an almost constant behavior, remaining close to values around 1. On the other hand, the Lower Estimate starts below as expected, since the initial choice for Δμ satisfies the condition (15). The estimated one-sided Lipschitz constant L is negative and equal to −1.9897, reflecting the decreasing behavior of the One-sided Upper Estimate and of the Lower Estimate. Condition (19) is depicted in the top-right panel of Figure 10. The right-hand side of the estimate (19) is decreasing, but always positive, while the one-sided Lipschitz constant L is negative. Hence, condition (19) is satisfied for the entire time interval [0, 0.1]. From this, we can infer that P μ 1 , t consistently serves as a stabilizing initial guess. This is demonstrated in the bottom panel of Figure 10, where the maximum eigenvalue remains negative throughout the time interval. Let us now perform a similar analysis for the time step Δt. For simplicity, we will use the explicit Euler method for integration. Given the initial condition y μ 1 , 0 = sin ( π x ) , consider the update y μ 1 , Δ t = y μ 1 , 0 + Δ t ( A ( y μ 1 , 0 ) F P μ 1 , 0 ) y μ 1 , 0 . We define f cl,0 as f c l , 0 = ( A ( y μ 1 , 0 ) F P μ 1 , 0 ) y μ 1 , 0 . Now, we compute

Δ A μ 1 , μ 1 , 0 , Δ t 2 = diag ( y μ 1 , Δ t y μ 1 , Δ t ) diag ( y μ 1 , 0 y μ 1 , 0 ) = ( Δ t ) 2 f c l , 0 2 + 2 Δ t f c l , 0 y μ 1 , 0 ,

then condition (15) becomes

( Δ t ) 2 f c l , 0 2 + 2 Δ t f c l , 0 y μ 1 , 0 1 2 H μ 1 , 0 2 < 0 ,

which leads to the solution

Δ t < f c l , 0 y μ 1 , 0 + ( f c l , 0 y μ 1 , 0 ) 2 + 1 2 H μ 1 , 0 2 f c l , 0 2 1.5694 .

In fact, for Δt = 1.6, the maximum eigenvalue of the closed loop matrix A ( y μ 1 , Δ t ) F P μ 1 , 0 is positive ( λ μ 1 , μ 1 , 0 , Δ t = 0.8752 ) , whereas for Δt = 1.5, it is negative ( λ μ 1 , μ 1 , 0 , Δ t = 0.7858 ) . This section justifies the use of the cascade information in solving the SDRE by means of NK.

Figure 10: 

Top: Verification of the estimate (15) (left) and the estimate (19) (right). Bottom: Maximum eigenvalue 




λ




μ


1


,


μ


2


,
t
,
t





 in the time interval [0, 0.1].
Figure 10:

Top: Verification of the estimate (15) (left) and the estimate (19) (right). Bottom: Maximum eigenvalue λ μ 1 , μ 2 , t , t in the time interval [0, 0.1].

References

[1] J. Garcke and A. Kröner, “Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids,” J. Sci. Comput., vol. 70, no. 1, pp. 1–28, 2016, https://doi.org/10.1007/s10915-016-0240-7.Suche in Google Scholar

[2] M. Falcone, G. Kirsten, and L. Saluzzi, “Approximation of optimal control problems for the Navier–Stokes equation via multilinear HJB-POD,” Appl. Math. Comput., vol. 442, no. 1, p. 127722, 2023. https://doi.org/10.1016/j.amc.2022.127722.Suche in Google Scholar

[3] J. Darbon, G. P. Langlois, and T. Meng, “Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures,” Res. Math. Sci., vol. 7, no. 3, Art. no. 20, 2020, https://doi.org/10.1007/s40687-020-00215-6.Suche in Google Scholar

[4] K. Kunisch and D. Walter, “Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation,” ESAIM: Control, Optim. Calc. Var., vol. 27, no. 1, p. 16, 2021. https://doi.org/10.1051/cocv/2021009.Suche in Google Scholar

[5] M. Zhou, J. Han, and J. Lu, “Actor-critic method for high dimensional static Hamilton–Jacobi–Bellman partial differential equations based on neural networks,” SIAM J. Sci. Comput., vol. 43, no. 6, pp. A4043–A4066, 2021, https://doi.org/10.1137/21m1402303.Suche in Google Scholar

[6] M. Oster, L. Sallandt, and R. Schneider, “Approximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formats,” SIAM J. Sci. Comput., vol. 44, no. 3, pp. B746–B770, 2022, https://doi.org/10.1137/21m1412190.Suche in Google Scholar

[7] S. Dolgov, D. Kalise, and L. Saluzzi, “Data-driven tensor train gradient cross approximation for Hamilton–Jacobi–Bellman equations,” SIAM J. Sci. Comput., vol. 45, no. 5, pp. A2153–A2184, 2023, https://doi.org/10.1137/22m1498401.Suche in Google Scholar

[8] T. Çimen, “State-dependent Riccati equation (SDRE) control: a survey,” IFAC Proc. Vol., vol. 41, no. 2, pp. 3761–3775, 2008, https://doi.org/10.3182/20080706-5-kr-1001.00635.Suche in Google Scholar

[9] G. Kirsten and V. Simoncini, “Order reduction methods for solving large-scale differential matrix Riccati equations,” SIAM J. Sci. Comput., vol. 42, no. 4, pp. A2182–A2205, 2020, https://doi.org/10.1137/19m1264217.Suche in Google Scholar

[10] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, “A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems,” SIAM J. Sci. Comput., vol. 42, no. 2, pp. A957–A996, 2020, https://doi.org/10.1137/18m1220960.Suche in Google Scholar

[11] D. Kleinman, “On an iterative technique for Riccati equation computations,” IEEE Trans. Automat. Control, vol. 13, no. 1, pp. 114–115, 1968, https://doi.org/10.1109/tac.1968.1098829.Suche in Google Scholar

[12] M. Hinze and S. Volkwein, “Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control,” in Dimension Reduction of Large-Scale Systems: Proceedings of a Workshop held in Oberwolfach, Germany, October 19–25, 2003, Berlin, Springer, 2005, pp. 261–306.Suche in Google Scholar

[13] K. Kunisch and S. Volkwein, “Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition,” J. Optim. Theor. Appl., vol. 102, no. 2, pp. 345–371, 1999. https://doi.org/10.1023/a:1021732508059.Suche in Google Scholar

[14] F. Pichi, M. Strazzullo, F. Ballarin, and G. Rozza, “Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction,” ESAIM: Math. Model. Numer. Anal., vol. 56, no. 4, pp. 1361–1400, 2022, https://doi.org/10.1051/m2an/2022044.Suche in Google Scholar

[15] M. Strazzullo, F. Ballarin, and G. Rozza, “POD-Galerkin model order reduction for parametrized nonlinear time dependent optimal flow control: an application to shallow water equations,” J. Numer. Math., vol. 30, no. 1, pp. 63–84, 2022, https://doi.org/10.1515/jnma-2020-0098.Suche in Google Scholar

[16] M. Strazzullo and F. Vicini, “POD-based reduced order methods for optimal control problems governed by parametric partial differential equation with varying boundary control,” Appl. Math. Comput., vol. 457, no. 1, Art. no. 128191, 2023, https://doi.org/10.1016/j.amc.2023.128191.Suche in Google Scholar

[17] K. Kunisch, S. Volkwein, and L. Xie, “HJB-POD based feedback design for the optimal control of evolution problems,” SIAM J. Appl. Dyn. Syst., vol. 4, no. 4, pp. 701–722, 2004. https://doi.org/10.1137/030600485.Suche in Google Scholar

[18] M. Hinze and S. Volkwein, “Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control,” in Dimension Reduction of Large-Scale Systems, Berlin, Springer, 2005, pp. 261–306.10.1007/3-540-27909-1_10Suche in Google Scholar

[19] A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” Adv. Comput. Math., vol. 46, no. 1, p. 9, 2020, https://doi.org/10.1007/s10444-020-09744-8.Suche in Google Scholar

[20] G. Kirsten and L. Saluzzi, “A multilinear HJB-POD method for the optimal control of PDEs on a tree structure,” J. Sci. Comput., vol. 101, no. 2, p. 41, 2024, https://doi.org/10.1007/s10915-024-02683-2.Suche in Google Scholar

[21] J. de Frutos, B. Garcia-Archilla, and J. Novo, “Optimal bounds for POD approximations of infinite horizon control problems based on time derivatives,” J. Sci. Comput., vol. 103, no. 1, pp. 1–28, 2023. https://doi.org/10.1007/s10915-025-02833-0.Suche in Google Scholar

[22] R. A. DeVore, “Chapter 3: The theoretical foundation of reduced basis methods,” in Model Reduction and Approximation, Philadelphia, SIAM, 2017, pp. 137–168.10.1137/1.9781611974829.ch3Suche in Google Scholar

[23] B. Peherstorfer, “Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling,” SIAM J. Sci. Comput., vol. 42, no. 5, pp. A2803–A2836, 2020, https://doi.org/10.1137/19m1257275.Suche in Google Scholar

[24] O. Koch and C. Lubich, “Dynamical low-rank approximation,” SIAM J. Matrix Anal. Appl., vol. 29, no. 2, pp. 434–454, 2007, https://doi.org/10.1137/050639703.Suche in Google Scholar

[25] T. P. Sapsis and P. F. Lermusiaux, “Dynamically orthogonal field equations for continuous stochastic dynamical systems,” Phys. D: Nonlinear Phenom., vol. 238, nos. 23–24, pp. 2347–2360, 2009, https://doi.org/10.1016/j.physd.2009.09.017.Suche in Google Scholar

[26] J. Kusch, G. Ceruti, L. Einkemmer, and M. Frank, “Dynamical low-rank approximation for Burgers’ equation with uncertainty,” Int. J. Uncertain. Quantification, vol. 12, no. 5, pp. 1–21, 2022, https://doi.org/10.1615/int.j.uncertaintyquantification.2022039345.Suche in Google Scholar

[27] C. Pagliantini, “Dynamical reduced basis methods for Hamiltonian systems,” Numerische Mathematik, vol. 148, no. 2, pp. 409–448, 2021. https://doi.org/10.1007/s00211-021-01211-w.Suche in Google Scholar

[28] M. Eigel, R. Schneider, and D. Sommer, “Dynamical low-rank approximations of solutions to the Hamilton–Jacobi–Bellman equation,” Numer. Lin. Algebra Appl., vol. 30, no. 3, p. e2463, 2023, https://doi.org/10.1002/nla.2463.Suche in Google Scholar

[29] A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 713–718, 2015, https://doi.org/10.1016/j.ifacol.2015.05.016.Suche in Google Scholar

[30] A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” ESAIM: Control, Optim. Calc. Var., vol. 24, no. 1, pp. 129–151, 2018, https://doi.org/10.1051/cocv/2017011.Suche in Google Scholar

[31] T. Cimen, “Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method,” Annu. Rev. Control, vol. 34, no. 1, pp. 32–51, 2010, https://doi.org/10.1016/j.arcontrol.2010.03.001.Suche in Google Scholar

[32] P. Lancaster, Algebraic Riccati Equations, Oxford, Oxford Science Publications/The Clarendon Press, Oxford University Press, 1995.10.1093/oso/9780198537953.001.0001Suche in Google Scholar

[33] H. T. Banks, B. M. Lewis, and H. T. Tran, “Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach,” Comput. Optim. Appl., vol. 37, no. 2, pp. 177–218, 2007, https://doi.org/10.1007/s10589-007-9015-2.Suche in Google Scholar

[34] J. R. Cloutier, C. N. D’Souza, and C. P. Mracek, “Nonlinear regulation and nonlinear H∞ control via the state-dependent Riccati equation technique: part 1, theory,” in Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, Embry Riddle University, 1996, pp. 117–131.Suche in Google Scholar

[35] C.-C. Chen, Y.-W. Liang, and W.-M. Jhu, “Global stability of a system with state-dependent Riccati equation controller,” J. Guid., Control, Dynam., vol. 38, no. 10, pp. 2050–2054, 2015, https://doi.org/10.2514/1.g000989.Suche in Google Scholar

[36] R. H. Bartels and G. W. Stewart, “Algorithm 432 [C2]: solution of the matrix equation AX + XB = C [F4],” Commun. ACM, vol. 15, no. 9, pp. 820–826, 1972, https://doi.org/10.1145/361573.361582.Suche in Google Scholar

[37] H. Keller, Lectures on Numerical Methods in Bifurcation Problems, Mumbai, Tata Institute of Fundamental Research, 1987.Suche in Google Scholar

[38] G. Söderlind, “The logarithmic norm. History and modern theory,” BIT Numer. Math., vol. 46, no. 3, pp. 631–652, 2006. https://doi.org/10.1007/s10543-006-0069-9.Suche in Google Scholar

[39] P. Gahinet and A. Laub, “Computable bounds for the sensitivity of the algebraic Riccati equation,” SIAM J. Control Optim., vol. 28, no. 6, pp. 1461–1480, 1990, https://doi.org/10.1137/0328077.Suche in Google Scholar

[40] C. Kenney and G. Hewer, “The sensitivity of the algebraic and differential Riccati equations,” SIAM J. Control Optim., vol. 28, no. 1, pp. 50–69, 1990, https://doi.org/10.1137/0328003.Suche in Google Scholar

[41] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Second. Springer Series in Computational Mathematics, vol. 31, Berlin, Springer, 2006.Suche in Google Scholar

[42] E. Celledoni and B. Owren, “A class of intrinsic schemes for orthogonal integration,” SIAM J. Numer. Anal., vol. 40, no. 6, pp. 2069–2084, 2002, https://doi.org/10.1137/s0036142901385143.Suche in Google Scholar

[43] S. Dolgov, D. Kalise, and L. Saluzzi, “Statistical Proper Orthogonal Decomposition for model reduction in feedback control,” 2023. [Online]. Available at: https://arxiv.org/abs/2311.16332.Suche in Google Scholar

[44] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, 1st ed., ser. La Matematica per Il 3+2, 92. Cham, Springer International Publishing, 2016.10.1007/978-3-319-15431-2_1Suche in Google Scholar

[45] B. Azmi, D. Kalise, and K. Kunisch, “Optimal feedback law recovery by gradient-augmented sparse polynomial regression,” J. Mach. Learn. Res., vol. 22, no. 48, pp. 1–32, 2021.Suche in Google Scholar

[46] J. Saak, M. Köhler, and P. Benner, “M-M.E.S.S.-3.1 – the matrix equations sparse solvers library,” 2025. Available at: https://www.mpi-magdeburg.mpg.de/projects/mess.Suche in Google Scholar

[47] P. Benner, M. Köhler, and J. Saak, “Matrix equations, sparse solvers: M-MESS-2.0. 1–philosophy, features, and application for (parametric) model order reduction,” Model Reduction Complex Dyn. Syst., no. 1, pp. 369–392, 2021, https://doi.org/10.1007/978-3-030-72983-7_18.Suche in Google Scholar

Received: 2025-01-13
Accepted: 2025-09-08
Published Online: 2025-11-07

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2025-0005/pdf?lang=de
Button zum nach oben scrollen