Abstract
We numerically benchmark methods for computing harmonic maps into the unit sphere, with particular focus on harmonic maps with singularities. For the discretization we compare two different approaches, both based on Lagrange finite elements. While the first method enforces the unit-length constraint only at the Lagrange nodes, the other one adds a pointwise projection to fulfill the constraint everywhere. For the solution of the resulting algebraic problems we compare a nonconforming gradient flow with a Riemannian trust-region method. Both are energy-decreasing and can be shown to converge globally to stationary points of the discretized Dirichlet energy. We observe that while the nonconforming and the conforming discretizations both show similar behavior for smooth problems, the nonconforming discretization handles singularities better. On the solver side, the second-order trust-region method converges after few steps, whereas the number of gradient-flow steps increases proportionally to the inverse grid element diameter.
Funding source: Deutsche Forschungsgemeinschaft (DFG)
Award Identifier / Grant number: 3013
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft (Funder DOI: https://dx.doi.org/10.13039/501100001659) in the Research Unit 3013 Vector- and Tensor-Valued Surface PDEs within the sub-projects TP3: Heterogeneous thin structures with prestrain and TP4: Bending plates of nematic liquid crystal elastomers.
-
Data availability: Not applicable.
References
[1] F. Hélein and J. C. Wood, “Harmonic maps,” Handbook Global Anal., vol. 1213, pp. 417–491, 2008, https://doi.org/10.1016/b978-044452833-9.50009-7.Suche in Google Scholar
[2] J. Eells and L. Lemaire, Two Reports on Harmonic Maps, Singapore, World Scientific Publishing Co., 1995.10.1142/9789812832030Suche in Google Scholar
[3] R. R. Kohlmeyer and J. Chen, “Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites,” Angewandte Chemie, vol. 125, no. 35, pp. 9404–9407, 2013, https://doi.org/10.1002/ange.201210232.Suche in Google Scholar
[4] L. T. de Haan, et al.., “Accordion-like actuators of multiple 3d patterned liquid crystal polymer films,” Adv. Funct. Mater., vol. 24, no. 9, pp. 1251–1258, 2014, https://doi.org/10.1002/adfm.201302568.Suche in Google Scholar
[5] T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater., vol. 14, no. 11, pp. 1087–1098, 2015, https://doi.org/10.1038/nmat4433.Suche in Google Scholar PubMed
[6] T. H. Ware, J. S. Biggins, A. F. Shick, M. Warner, and T. J. White, “Localized soft elasticity in liquid crystal elastomers,” Nat. Commun., vol. 7, no. 1, pp. 1–7, 2016, https://doi.org/10.1038/ncomms10781.Suche in Google Scholar PubMed PubMed Central
[7] R. H. Nochetto, S. W. Walker, and W. Zhang, “A finite element method for nematic liquid crystals with variable degree of orientation,” SIAM J. Numer. Anal., vol. 55, no. 3, pp. 1357–1386, 2017. [Online]. Available: https://doi.org/10.1137/15M103844X.Suche in Google Scholar
[8] S. W. Walker, “A finite element method for the generalized Ericksen model of nematic liquid crystals,” ESAIM Math. Model. Numer. Anal., vol. 54, no. 4, pp. 1181–1220, 2020, https://doi.org/10.1051/m2an/2019092.Suche in Google Scholar
[9] S. Bartels, M. Griehl, S. Neukamm, D. Padilla-Garza, and C. Palus, “A nonlinear bending theory for nematic LCE plates,” Math. Model Methods Appl. Sci., vol. 33, no. 7, pp. 1437–1516, 2023, https://doi.org/10.1142/s0218202523500331.Suche in Google Scholar
[10] A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, “Recent analytical developments in micromagnetics,” Max-Planck-Institut für Mathematik in den Naturwissenschaften, Preprint 80, 2004. [Online]. Available: https://www.mis.mpg.de/preprints/2004/preprint2004_80.pdf.Suche in Google Scholar
[11] C. Melcher, “Chiral skyrmions in the plane,” Proc. Roy. Soc. A, vol. 470, no. 2172, pp. 1–17, 2014. https://doi.org/10.1098/rspa.2014.0394.Suche in Google Scholar
[12] A. Monteil, R. Rodiac, and J. Van Schaftingen, “Ginzburg–Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold,” Arch. Ration. Mech. Anal., vol. 242, no. 2, pp. 875–935, 2021, https://doi.org/10.1007/s00205-021-01695-8.Suche in Google Scholar
[13] M. Struwe, Variational Methods, vol. 991, Berlin, Springer, 2000.10.1007/978-3-662-04194-9Suche in Google Scholar
[14] H. Brezis, J.-M. Coron, and E. H. Lieb, “Harmonic maps with defects,” Commun. Math. Phys., vol. 107, no. 4, pp. 649–705, 1986, https://doi.org/10.1007/bf01205490.Suche in Google Scholar
[15] R. Cohen, R. Hardt, D. Kinderlehrer, S.-Y. Lin, and M. Luskin, “Minimum energy configurations for liquid crystals: Computational results,” in Theory and Applications of Liquid Crystals, New York, Springer, 1987, pp. 99–121.10.1007/978-1-4613-8743-5_6Suche in Google Scholar
[16] A. Weinmann, L. Demaret, and M. Storath, “Total variation regularization for manifold-valued data,” SIAM J. Imag. Sci., vol. 7, no. 4, pp. 2226–2257, 2014, https://doi.org/10.1137/130951075.Suche in Google Scholar
[17] S.-Y. Lin, Numerical analysis for Liquid Crystal Problems, Ph.D. dissertation, University of Minnesota, Minneapolis, 1987.Suche in Google Scholar
[18] F. Alouges, “A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case,” SIAM J. Numer. Anal., vol. 34, no. 5, pp. 1708–1726, 1997, https://doi.org/10.1137/s0036142994264249.Suche in Google Scholar
[19] S. Bartels, “Robust a priori error analysis for the approximation of degree-one Ginzburg–Landau vortices,” ESAIM: Math. Model. Numer. Anal., vol. 39, no. 5, pp. 863–882, 2005, https://doi.org/10.1051/m2an:2005038.10.1051/m2an:2005038Suche in Google Scholar
[20] L. A. Vese and S. J. Osher, “Numerical methods for p-harmonic flows and applications to image processing,” SIAM J. Numer. Anal., vol. 40, no. 6, pp. 2085–2104, 2002, https://doi.org/10.1137/s0036142901396715.Suche in Google Scholar
[21] Q. Hu, X.-C. Tai, and R. Winther, “A saddle point approach to the computation of harmonic maps,” SIAM J. Numer. Anal., vol. 47, no. 2, pp. 1500–1523, 2009, https://doi.org/10.1137/060675575.Suche in Google Scholar
[22] C. Liu and N. J. Walkington, “Approximation of liquid crystal flows,” SIAM J. Numer. Anal., vol. 37, no. 3, pp. 725–741, 2000, https://doi.org/10.1137/s0036142997327282.Suche in Google Scholar
[23] Q. Du, M. D. Gunzburger, and J. S. Peterson, “Analysis and approximation of the Ginzburg–Landau model of superconductivity,” SIAM Review, vol. 34, no. 1, pp. 54–81, 1992, https://doi.org/10.1137/1034003.Suche in Google Scholar
[24] H. Antil, S. Bartels, and A. Schikorra, “Approximation of fractional harmonic maps,” IMA J. Numer. Anal., vol. 43, no. 3, pp. 1291–1323, 2023, https://doi.org/10.1093/imanum/drac029.Suche in Google Scholar
[25] S. Bartels, “Stability and convergence of finite-element approximation schemes for harmonic maps,” SIAM J. Numer. Anal., vol. 43, no. 1, pp. 220–238, 2005, https://doi.org/10.1137/040606594.Suche in Google Scholar
[26] S. Bartels, “Projection-free approximation of geometrically constrained partial differential equations,” Math. Comp., vol. 85, no. 299, pp. 1033–1049, 2016, https://doi.org/10.1090/mcom/3008.Suche in Google Scholar
[27] O. Sander, “Geodesic finite elements on simplicial grids,” Internat. J. Numer. Methods Engrg., vol. 92, no. 12, pp. 999–1025, 2012, https://doi.org/10.1002/nme.4366.Suche in Google Scholar
[28] O. Sander, “Geodesic finite elements of higher order,” IMA J. Numer. Anal., vol. 36, no. 1, pp. 238–266, 2016.Suche in Google Scholar
[29] H. Hardering and O. Sander, “Geometric finite elements,” in Handbook of Variational Methods for Nonlinear Geometric Data, Cham, Springer, 2020, pp. 3–49.10.1007/978-3-030-31351-7_1Suche in Google Scholar
[30] P. Grohs, H. Hardering, O. Sander, and M. Sprecher, “Projection-based finite elements for nonlinear function spaces,” SIAM J. Numer. Anal., vol. 57, no. 1, pp. 404–428, 2019, https://doi.org/10.1137/18m1176798.Suche in Google Scholar
[31] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton, Princeton University Press, 2009.10.1515/9781400830244Suche in Google Scholar
[32] S. Bartels, “Combination of global and local approximation schemes for harmonic maps into spheres,” J. Comput. Math., vol. 27, nos. 2-3, pp. 170–183, 2009.Suche in Google Scholar
[33] S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations, vol. 47, Cham, Springer, 2015.10.1007/978-3-319-13797-1Suche in Google Scholar
[34] D. J. Thouless, Topological quantum Numbers in Nonrelativistic Physics, Singapore, World Scientific, 1998.10.1142/9789812386298Suche in Google Scholar
[35] O. Sander, “Test function spaces for geometric finite elements,” arXiv preprint arXiv:1607.07479, 2016.Suche in Google Scholar
[36] S. Bartels, “Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces,” Math. Comput., vol. 79, no. 271, pp. 1263–1301, 2010, https://doi.org/10.1090/s0025-5718-09-02300-x.Suche in Google Scholar
[37] S. Bartels, C. Palus, and Z. Wang, “Quasi-optimal error estimates for the finite element approximation of stable harmonic maps with nodal constraints,” SIAM J. Numer. Anal., vol. 61, no. 4, pp. 1819–1834, 2023, https://doi.org/10.1137/22m1524497.Suche in Google Scholar
[38] E. S. Gawlik and M. Leok, “Embedding-based interpolation on the special orthogonal group,” SIAM J. Sci. Comput., vol. 40, no. 2, pp. A721–A746, 2018, https://doi.org/10.1137/17m1129416.Suche in Google Scholar
[39] J. Appell and P. Zabrejko, Nonlinear Superposition Operators, Cambridge, Cambridge University Press, 1990.10.1017/CBO9780511897450Suche in Google Scholar
[40] L. Evans, Measure Theory and Fine Properties of Functions, Oxfordshire, Routledge, 2018.10.1201/9780203747940Suche in Google Scholar
[41] T.-P. Fries and T. Belytschko, “The extended/generalized finite element method: an overview of the method and its applications,” Internat. J. Numer. Methods Engrg., vol. 84, no. 3, pp. 253–304, 2010. https://doi.org/10.1002/nme.2914.Suche in Google Scholar
[42] P. Grohs, H. Hardering, and O. Sander, “Optimal a priori discretization error bounds for geodesic finite elements,” Found. Comput. Math., vol. 15, no. 6, pp. 1357–1411, 2015, https://doi.org/10.1007/s10208-014-9230-z.Suche in Google Scholar
[43] H. Hardering, “L2-discretization error bounds for maps into Riemannian manifolds,” Numerische Mathematik, vol. 139, no. 2, pp. 381–410, 2018, https://doi.org/10.1007/s00211-017-0941-3.Suche in Google Scholar
[44] H. Hardering, “The Aubin–Nitsche trick for semilinear problems,” arXiv:1707.00963, 2017.Suche in Google Scholar
[45] G. Akrivis, S. Bartels, and C. Palus, “Quadratic constraint consistency in the projection-free approximation of harmonic maps and bending isometries,” Math. Comput., vol. 94, pp. 2251–2269, 2025. https://doi.org/10.1090/mcom/4035.Suche in Google Scholar
[46] P.-A. Absil, R. Mahony, and J. Trumpf, “An extrinsic look at the Riemannian Hessian,” in International Conference on Geometric Science of Information, Berlin, Heidelberg, Springer, 2013, pp. 361–368.10.1007/978-3-642-40020-9_39Suche in Google Scholar
[47] O. Sander, P. Neff, and M. Bîrsan, “Numerical treatment of a geometrically nonlinear planar Cosserat shell model,” Comput. Mech., vol. 57, no. 5, pp. 817–841, 2016. https://doi.org/10.1007/s00466-016-1263-5.Suche in Google Scholar
[48] R. Kornhuber, Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems, Stuttgart, Vieweg+ Teubner Verlag, 1997.Suche in Google Scholar
[49] A. Conn, N. Gould, and P. Toint, Trust-Region Methods, University City, Philadelphia, SIAM, 2000.10.1137/1.9780898719857Suche in Google Scholar
[50] L. J. Nebel, O. Sander, M. Bîrsan, and P. Neff, “A geometrically nonlinear Cosserat shell model for orientable and non-orientable surfaces: discretization with geometric finite elements,” Comput. Methods Appl. Mech. Engrg., vol. 416, Art. no. 116309, 2023, https://doi.org/10.1016/j.cma.2023.116309.Suche in Google Scholar
[51] H. Brezis and J.-M. Coron, “Large solutions for harmonic maps in two dimensions,” Commun. Math. Phys., vol. 92, no. 2, pp. 203–215, 1983. https://doi.org/10.1007/bf01210846.Suche in Google Scholar
[52] R. Schoen and K. Uhlenbeck, “A regularity theory for harmonic maps,” J. Differ. Geom., vol. 17, no. 2, pp. 307–335, 1982, https://doi.org/10.4310/jdg/1214436923.Suche in Google Scholar
[53] P. Bastian et al.., “The Dune framework: Basic concepts and recent developments,” Comput. Math. Appl., vol. 81, pp. 75–112, 2021, https://doi.org/10.1016/j.camwa.2020.06.007.Suche in Google Scholar
[54] O. Sander, DUNE – the Distributed and Unified Numerics Environment, vol. 140, Cham, Springer, 2020.10.1007/978-3-030-59702-3Suche in Google Scholar
[55] M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid module,” Arch. Numer. Software, vol. 4, no. 1, pp. 1–28, 2016.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston