Abstract
The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ3. The method employs parametric Pk-Pk−1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin–Helmholtz instability problem on the unit sphere.
-
Funding: The authors T. Jankuhn and A. Reusken wish to thank the German Research Foundation (DFG) for financial support within the Research Unit ‘Vector- and tensor valued surface PDEs' (FOR 3013) with project No. RE 1461/11-1. M. Olshanskii and A. Zhiliakov were partially supported by NSF through the Division of Mathematical Sciences grants 1717516 and 2011444.
References
[1] M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E 79 (2009), No. 3, 031915.10.1103/PhysRevE.79.031915Suche in Google Scholar PubMed
[2] A. Bonito, A. Demlow, and M. Licht, A divergence-conforming finite element method for the surface Stokes equation, SIAM J. Numer. Anal., 58 (2020), No. 5, 2764–2798.10.1137/19M1284592Suche in Google Scholar
[3] P. Brandner and A. Reusken, Finite element error analysis of surface Stokes equations in stream function formulation, ESAIM: M2AN, 54 (2020), No. 6, 2069–2097.10.1051/m2an/2020044Suche in Google Scholar
[4] H. Brenner, Interfacial Transport Processes and Rheology, Elsevier, 2013.Suche in Google Scholar
[5] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal. 56 (2018), 1525–1546.10.1137/17M1154266Suche in Google Scholar
[6] E. Burman, P. Hansbo, M. G. Larson, and A. Massing, Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions, ESAIM: Math. Modelling Numer. Analysis 52 (2018), No. 6, 2247–2282.10.1051/m2an/2018038Suche in Google Scholar
[7] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci Flow: Techniques and Applications. Part IV: Long-Time Solutions and Related Topics, American Mathematical Society, 2007.10.1090/surv/144Suche in Google Scholar
[8] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), 421–442.10.1137/050642873Suche in Google Scholar
[9] DROPS package, http://www.igpm.rwth-aachen.de/DROPS/.Suche in Google Scholar
[10] G. Dziuk, Finite elements for the Beltrami Operator on arbitrary surfaces, In: Partial Differential Equations and Calculus of Variations (Eds. S. Hildebrandt and R. Leis), Lecture Notes in Mathematics, Vol. 1357, Springer, 1988, pp. 142–155.10.1007/BFb0082865Suche in Google Scholar
[11] T.-P. Fries, Higher-order surface FEM for incompressible Navier–Stokes flows on manifolds, Int. J. Numer. Methods Fluids 88 (2018), No. 2, 55–78.10.1002/fld.4510Suche in Google Scholar
[12] G. G. Fuller and J. Vermant, Complex fluid–fluid interfaces: rheology and structure, Annual Review of Chemical and Biomolecular Engrg. 3 (2012), 519–543.10.1146/annurev-chembioeng-061010-114202Suche in Google Scholar PubMed
[13] J. Grande, C. Lehrenfeld, and A. Reusken, Analysis of a high-order trace finite element method for PDEs on level set surfaces, SIAM J. Numer. Analysis 56 (2018), No. 1, 228–255.10.1137/16M1102203Suche in Google Scholar
[14] B. J. Gross, N. Trask, P. Kuberry, and P. J. Atzberger, Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: A generalized moving least-squares (GMLS) approach, J. Comp. Phys., 409 (2020), 109340.10.1016/j.jcp.2020.109340Suche in Google Scholar
[15] M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57 (1975), No. 4, 291–323.10.1007/BF00261375Suche in Google Scholar
[16] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), 5537–5552.10.1016/S0045-7825(02)00524-8Suche in Google Scholar
[17] P. Hansbo, M. G. Larson, and K. Larsson, Analysis of finite element methods for vector Laplacians on surfaces, IMA J. Numer. Anal. 40 (2020), No, 3, 1652–1701.10.1093/imanum/drz018Suche in Google Scholar
[18] T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using Grad-Div stabilization, Int. J. Numer. Methods Fluids 71 (2013), No. 1, 118–134.10.1002/fld.3654Suche in Google Scholar
[19] T. Jankuhn, M. A. Olshanskii, and A. Reusken, Incompressible fluid problems on embedded surfaces: Modeling and variational formulations, Interfaces and Free Boundaries 20 (2018), 353–377.10.4171/IFB/405Suche in Google Scholar
[20] T. Jankuhn and A. Reusken, Higher order trace finite element methods for the surface Stokes equation, Preprint arXiv:1909.08327, 2019.Suche in Google Scholar
[21] T. Jankuhn and A. Reusken, Trace finite element methods for surface vector-Laplace equations, IMA J. Numer. Anal. 41 (2021), No. 1, 48–83.10.1093/imanum/drz062Suche in Google Scholar
[22] P. L. Lederer, C. Lehrenfeld, and J. Schöberl, Divergence-free tangential finite element methods for incompressible flows on surfaces, Int. J. Numer. Meth. Engrg., 121 (2020), No. 11, 2503–2533.10.1002/nme.6317Suche in Google Scholar PubMed PubMed Central
[23] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comp. Methods Appl. Mechanics Engrg. 300 (2016), 716–733.10.1016/j.cma.2015.12.005Suche in Google Scholar
[24] C. Lehrenfeld and A. Reusken, Analysis of a high-order unfitted finite element method for elliptic interface problems, IMA J. Numer. Anal. 38 (2017), No. 3, 1351–1387.10.1093/imanum/drx041Suche in Google Scholar
[25] Netgen/NGSolve, https://ngsolve.org/.Suche in Google Scholar
[26] I. Nitschke, A. Voigt, and J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, J. Fluid Mech. 708 (2012), 418–438.10.1017/jfm.2012.317Suche in Google Scholar
[27] I. Nitschke, S. Reuther, and A. Voigt, Hydrodynamic interactions in polar liquid crystals on evolving surfaces, Phys. Review Fluids 4 (2019), No. 4, 044002.10.1103/PhysRevFluids.4.044002Suche in Google Scholar
[28] M. A. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin, A finite element method for the surface Stokes problem, SIAM J. Sci. Comp. 40 (2018), No. 4, A2492–A2518.10.1137/18M1166183Suche in Google Scholar
[29] M. A. Olshanskii, A. Reusken, and X. Xu, A stabilized finite element method for advection–diffusion equations on surfaces, IMA J. Numer. Anal. 34 (2014), 732–758.10.1093/imanum/drt016Suche in Google Scholar
[30] M. A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp. 73 (2004), No. 248, 1699–1718.10.1090/S0025-5718-03-01629-6Suche in Google Scholar
[31] M. A. Olshanskii and A. Reusken, Trace finite element methods for PDEs on surfaces, In: Geometrically Unfitted Finite Element Methods and Applications (Eds. S. P. A. Bordas, E. Burman, M. G. Larson, and M. A. Olshanskii), Springer, Cham, 2017, pp. 211–258.10.1007/978-3-319-71431-8_7Suche in Google Scholar
[32] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), 3339–3358.10.1137/080717602Suche in Google Scholar
[33] M. A. Olshanskii, A. Reusken, and A. Zhiliakov, Inf-sup stability of the trace P2-P1 Taylor–Hood elements for surface PDEs, Math. Comp., 90 (2021), 1527–1555.10.1090/mcom/3551Suche in Google Scholar
[34] M. A. Olshanskii and V. Yushutin, A penalty finite element method for a fluid system posed on embedded surface, J. Math. Fluid Mech. 21 (2019), No. 1, 14.10.1007/s00021-019-0420-ySuche in Google Scholar
[35] M. Rahimi, A. DeSimone, and M. Arroyo, Curved fluid membranes behave laterally as effective viscoelastic media, Soft Matter 9 (2013), No. 46, 11033–11045.10.1039/c3sm51748aSuche in Google Scholar
[36] P. Rangamani, A. Agrawal, K. K. Mandadapu, G. Oster, and D. J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes, Biomechanics and Modeling in Mechanobiology 12 (2013), No. 4, 833–845.10.1007/s10237-012-0447-ySuche in Google Scholar PubMed PubMed Central
[37] A. Reusken, Analysis of trace finite element methods for surface partial differential equations, IMA J. Numer. Anal. 35 (2015), No. 4, 1568–1590.10.1093/imanum/dru047Suche in Google Scholar
[38] A. Reusken, Stream function formulation of surface Stokes equations, IMA J. Numer. Anal. 40 (2020), No. 1, 109–139.10.1093/imanum/dry062Suche in Google Scholar
[39] S. Reuther and A. Voigt, Solving the incompressible surface Navier–Stokes equation by surface finite elements, Physics of Fluids 30 (2018), No. 1, 012107.10.1063/1.5005142Suche in Google Scholar
[40] A. Sahu, Y. Omar, R. Sauer, and K. Mandadapu, Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces, J. Comp. Phys. 407 (2020), 109253.10.1016/j.jcp.2020.109253Suche in Google Scholar
[41] P. W. Schroeder, V. John, P. L. Lederer, C. Lehrenfeld, G. Lube, and J. Schöberl, On reference solutions and the sensitivity of the 2D Kelvin–Helmholtz instability problem, Computers & Mathematics Applications 77 (2019), No. 4, 1010–1028.10.1016/j.camwa.2018.10.030Suche in Google Scholar
[42] SciPy, https://www.scipy.org/.Suche in Google Scholar
[43] L. E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chemical Engrg. Sci. 12 (1960), No. 2, 98–108.10.1016/0009-2509(60)87003-0Suche in Google Scholar
[44] J. C. Slattery, L. Sagis, and E.-S. Oh, Interfacial Transport Phenomena, Springer Science & Business Media, 2007.Suche in Google Scholar
[45] A. Torres-Sanchez, D. Santos-Olivan, and M. Arroyo, Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations, J. Comp. Phys., 405 (2020), No. 1, 109168.10.1016/j.jcp.2019.109168Suche in Google Scholar
[46] A. Torres-Sánchez, D. Millán, and M. Arroyo, Modelling fluid deformable surfaces with an emphasis on biological interfaces, J. Fluid Mech. 872 (2019), 218–271.10.1017/jfm.2019.341Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The deal.II library, Version 9.3
- A finite element method for degenerate two-phase flow in porous media. Part II: Convergence
- Matrix equation solving of PDEs in polygonal domains using conformal mappings
- Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation
Artikel in diesem Heft
- Frontmatter
- The deal.II library, Version 9.3
- A finite element method for degenerate two-phase flow in porous media. Part II: Convergence
- Matrix equation solving of PDEs in polygonal domains using conformal mappings
- Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation