Startseite A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness

  • Vivette Girault , Beatrice Riviere EMAIL logo und Loic Cappanera
Veröffentlicht/Copyright: 3. Juli 2021

Abstract

A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly thewetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Stability of the scheme and existence of a solution are established.

JEL Classification: 65M60; 65M12
  1. Funding: The work of the second author was supported in part by NSF-DMS 1913291.

References

[1] H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, Annali della Scuola Normale Superiore di Pisa-Classe diScienze 12 (1985), No. 3, 335-392.Suche in Google Scholar

[2] T. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Analysis, Theory, Models & Applications 19 (1992), No. 11,1009-1031.10.1016/0362-546X(92)90121-TSuche in Google Scholar

[3] T. Arbogast and M. F Wheeler, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33 (1996), No. 4,1669-1687.10.1137/S0036142994266728Suche in Google Scholar

[4] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Appl. Sci. Publ. Ltd., London, 1979.Suche in Google Scholar

[5] P. Bastian, A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci. 18 (2014), No. 5, 779-796.10.1007/s10596-014-9426-ySuche in Google Scholar

[6] J. Casado-Diaz, T. Chacon Rebollo, V. Girault, M. Gomez Marmol, and F. Murat, Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1, Numerische Mathematik 105 (2007), No. 3, 337-374.10.1007/s00211-006-0033-2Suche in Google Scholar

[7] G. Chavent, A new formulation of diphasic incompressible flows in porous media, In: Applications of Methods of Functional Analysis to Problems in Mechanics, Vol. 503, Springer, Berlin-Heidelberg, 1976, pp. 258-270.10.1007/BFb0088761Suche in Google Scholar

[8] G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, Elsevier, 1986.Suche in Google Scholar

[9] Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differ. Equ., 171 (2001), No. 2, 203-232.10.1006/jdeq.2000.3848Suche in Google Scholar

[10] Z. Chen and R. Ewing, Mathematical analysis for reservoir models, SIAM J. Numer. Anal., 30 (1999), No. 2, 431-453.10.1137/S0036141097319152Suche in Google Scholar

[11] Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow, III. Sharp error estimates, Numerische Mathematik 90 (2001), No. 2, 215-240.10.1007/s002110100291Suche in Google Scholar

[12] K. Deimling, Nonlinear Functional Analysis, Dover Publications, Mineola, New York, 1985.10.1007/978-3-662-00547-7Suche in Google Scholar

[13] G. Dinca andJ.Mawlin, Brouwer Degree and Applications, Laboratoire Jacques-Louis Lions, Université Paris VI, Report, 2009.Suche in Google Scholar

[14] J. Douglas, Jr., Finite difference methods for two-phase incompressible flow in porous media, SIAM J. Numer. Anal. 20 (1983), No. 4, 681-696.10.1137/0720046Suche in Google Scholar

[15] Y. Epshteyn and B. Riviere, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow, J. Comput. Appl. Math., 225 (2009), 487-509.10.1016/j.cam.2008.08.026Suche in Google Scholar

[16] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering scheme, ESAIM: Math. Modelling Numer. Anal., 37 (2003), No. 6, 937-972.10.1051/m2an:2003062Suche in Google Scholar

[17] R. Eymard, D. Hilhorst, and M. Vohralik, A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numerische Mathematik, 105 (2006), No. 1, 73-131.10.1007/978-3-642-18775-9_26Suche in Google Scholar

[18] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, 7 (2000), 713-1018.10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[19] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Stat. Comp., 12 (1991), No. 5,1029-1057.10.1137/0912055Suche in Google Scholar

[20] V. Girault, B. Riviere, and L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part II: Convergence, J. Numer. Math., 29 (2021), No. 3 (to appear).10.1515/jnma-2020-0005Suche in Google Scholar

[21] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximations for hyperbolic systems, SIAM J. Numer. Anal. 54 (2016), No. 4, 2466-2489.10.1137/16M1074291Suche in Google Scholar

[22] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of Hydrosystems, Springer-Verlag, 1997.10.1007/978-3-642-60763-9Suche in Google Scholar

[23] D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differ. Equ., 55 (1984), 276-288.10.1016/0022-0396(84)90084-6Suche in Google Scholar

[24] A. Michel, A finite volume scheme for two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 41 (2003), No. 4, 1301-1317.10.1137/S0036142900382739Suche in Google Scholar

[25] M. Ohlberger, Convergence of a mixed finite element: Finite volume method for the two phase flow in porous media, East WestJ. Numer. Math., 5 (1997), 183-210.Suche in Google Scholar

[26] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 2000.Suche in Google Scholar

[27] C. S. Woodward and C. N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37 (2000), No. 3, 701-724.10.1137/S0036142996311040Suche in Google Scholar

[28] I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow, East WestJ. Numer. Math. 5 (1997), 211-230.Suche in Google Scholar

Received: 2020-01-24
Revised: 2020-07-27
Accepted: 2020-12-23
Published Online: 2021-07-03
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2020-0004/html?lang=de
Button zum nach oben scrollen