Startseite Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem

  • Francisco GuillĂ©n-GonzĂ lez , M. Victoria Redondo-Neble und J. Rafael RodrĂ­guez-GalvĂ n EMAIL logo
Veröffentlicht/Copyright: 3. Juli 2021

Abstract

We propose a Discontinuous Galerkin (DG) scheme for the hydrostatic Stokes equations. These equations, related to large-scale PDE models in oceanography, are characterized by the loss of ellipticity of the vertical momentum equation. This fact provides some interesting challenges, such as the design of stable numerical schemes. The new scheme proposed here is based on the symmetric interior penalty (SIP) technique, with a particular treatment of the vertical velocity. It is well-known that stability of the mixed formulation of primitive equations requires, besides the LBB inf-sup condition, an additional hydrostatic inf-sup restriction relating pressure and vertical velocity. This hydrostatic inf-sup condition invalidates stability of usual Stokes stable continuous finite elements like Taylor-Hood 𝓟2/𝓟1 or bubble 𝓟1b/𝓟1. Here we prove stability for our 𝓟k/𝓟k DG scheme. Some novel numerical tests are provided which are in agreement with the previous analysis.

MSC 2010: 65M60; 65M12; 35Q35

References

[1] V. Aizinger and C. Dawson, The local discontinuous Galerkin method for three-dimensional shallow water flow, Comp. Meth. Appl. Mech. Engrg. 196 (2007), No. 4, 734-746.10.1016/j.cma.2006.04.010Suche in Google Scholar

[2] ArnoldD.N, An interior penalty finite element method with discontinuous elements, SIAMJ. Numer. Anal. 19 (1982), No. 4, 742-760.10.1137/0719052Suche in Google Scholar

[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2002), No. 5,1749-1779.10.1137/S0036142901384162Suche in Google Scholar

[4] P. Azérad, Analyse et approximation du problÚme de Stokes dans un bassin peu profond, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), No. 1, 53-58.Suche in Google Scholar

[5] P. AzĂ©rad, Analyse des Ă©quations de Navier-Stokes en bassin peu profond et de l’équation de transport, Ph.D. thesis, NeuchĂątel, 1996.Suche in Google Scholar

[6] P. Azérad, Mathematical analysis and finite element strategy for 3D numerical simulation of Navier-Stokes equations in thin domains, In: Proc. ofECCOMAS, 2000Suche in Google Scholar

[7] P. Azérad and F. Guillén, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal. 33 (2001), No. 4, 847-859.10.1137/S0036141000375962Suche in Google Scholar

[8] O. Besson and M.R. Laydi, Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation, Math. Model. Num. Anal. 26 (1992), No. 7, 855-865.10.1051/m2an/1992260708551Suche in Google Scholar

[9] S. Blaise, R. Comblen, V. Legat, J. F. Remacle, E. Deleersnijder, and J. Lambrechts, A discontinuous finite element baroclinic marine model on unstructured prismatic meshes, Ocean Dynamics60 (2010), No. 6,1371-1393.10.1007/s10236-010-0358-3Suche in Google Scholar

[10] T. Chacón-Rebollo and F. Guillén-Gonzålez, An intrinsic analysis of the hydrostatic approximation of Navier-Stokes equations, C. R. Acad. Sci. Paris, Série I,330 (2000), 841-846.10.1016/S0764-4442(00)00266-4Suche in Google Scholar

[11] T. ChacĂłn-Rebollo and D. RodrĂ­guez-GĂłmez, A numerical solver for the primitive equations of the ocean using term-byterm stabilization, Appl. Numer. Math. 55 (2005), No.1,1-31.10.1016/j.apnum.2004.08.007Suche in Google Scholar

[12] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics (Eds. T. J. Barth and H. Deconinck), Springer, Berlin-Heidelberg, 1999, pp. 69-224.10.1007/978-3-662-03882-6_2Suche in Google Scholar

[13] B. Cockburn, G. Kanschat, D. Schotzau, and C. Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal. 40 (2002), No. 1, 319-343.10.1137/S0036142900380121Suche in Google Scholar

[14] B. Cockburn, G. E. Karniadakis, and C. W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, 1st ed., Springer, 2011.Suche in Google Scholar

[15] B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), No. 6, 2440-2463.10.1137/S0036142997316712Suche in Google Scholar

[16] B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics - Physical and Numerical Aspects, Academic Press, 2009.Suche in Google Scholar

[17] C. Dawson and V. Aizinger, A discontinuous Galerkin method for three-dimensional shallow water equations, J. Sci. Computing22 (2005), No.1, 245-267.10.1007/s10915-004-4139-3Suche in Google Scholar

[18] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Berlin-New York, 2012.10.1007/978-3-642-22980-0Suche in Google Scholar

[19] V. Dolejsi and M. Feistauer, Discontinuous Galerkin Method, Springer Series in Computational Mathematics. Vol. 48, Springer Int. Publishing, Cham, 2015.10.1007/978-3-319-19267-3Suche in Google Scholar

[20] J. Douglas and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Computing Methods in Applied Sciences, Vol. 58 (Eds. R. Glowinski and J. L. Lions), Springer, Berlin-Heidelberg, 1976, pp. 207-216.10.1007/BFb0120591Suche in Google Scholar

[21] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.10.1007/978-1-4757-4355-5Suche in Google Scholar

[22] F. Guillen-Gonzalez and M.V. Redondo-Neble, Convergence and error estimates of viscosity-splittingfinite-element schemes for the primitive equations, Appl. Numer. Math. 11 (2017), 219-245.10.1016/j.apnum.2016.09.011Suche in Google Scholar

[23] F. Guillen-Gonzalez, M.V. Redondo-Neble, and J. R. Rodriguez-Galvan, On Stability of Discontinuous Galerkin Approximations to Anisotropic Stokes Equations, Recent Advances in Differential Equations and Applications, Springer, 2019.10.1007/978-3-030-00341-8_13Suche in Google Scholar

[24] F. Guillen-Gonzalez and J. R. Rodriguez-Galvan, Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes, Numerische Mathematik, 130 (2015), No. 2, 225-256.10.1007/s00211-014-0663-8Suche in Google Scholar

[25] F. Guillen-Gonzalez and J. R. Rodriguez-Galvan, Stabilized schemes for the hydrostatic Stokes equations, SIAM J. Numer. Anal. 53 (2015), No. 4,1876-1896.10.1137/140998640Suche in Google Scholar

[26] F. Guillen-Gonzalez and J. R. Rodriguez-Galvan, On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity, Applied Numer. Math. 99 (2016), 51-76.10.1016/j.apnum.2015.07.002Suche in Google Scholar

[27] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method, Comp. Methods Applied Mech. Engrg. 191 (2002), No. 17-18,1895-1908.10.1016/S0045-7825(01)00358-9Suche in Google Scholar

[28] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), No. 3-4, 251-265.10.1515/jnum-2012-0013Suche in Google Scholar

[29] R. L. Higdon, Multiple time scales and pressure forcing in discontinuous Galerkin approximations to layered ocean models, J. Comp. Phys. 295 (2015), 230-260.10.1016/j.jcp.2015.04.010Suche in Google Scholar

[30] G. Kanschat, Discontinuous Galerkin Methods for Viscous Incompressible Flow, Teubner Research, Dt. Univ.-Verl, Wiesbaden, 2007.Suche in Google Scholar

[31] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.10.1007/978-1-4612-4650-3Suche in Google Scholar

[32] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Report LA-UR-73-479, 1973.Suche in Google Scholar

[33] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 2008.10.1137/1.9780898717440Suche in Google Scholar

Received: 2019-12-22
Revised: 2020-10-05
Accepted: 2020-11-03
Published Online: 2021-07-03
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2019-0108/pdf?lang=de
Button zum nach oben scrollen