Startseite A redistributed bundle algorithm based on local convexification models for nonlinear nonsmooth DC programming
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A redistributed bundle algorithm based on local convexification models for nonlinear nonsmooth DC programming

  • Jie Shen EMAIL logo , Jia-Tong Li , Fang-Fang Guo und Na Xu
Veröffentlicht/Copyright: 3. Juli 2021

Abstract

For nonlinear nonsmooth DC programming (difference of convex functions), we introduce a new redistributed proximal bundle method. The subgradient information of both the DC components is gathered from some neighbourhood of the current stability center and it is used to build separately an approximation for each component in the DC representation. Especially we employ the nonlinear redistributed technique to model the second component of DC function by constructing a local convexification cutting plane. The corresponding convexification parameter is adjusted dynamically and is taken sufficiently large to make the `augmented' linearization errors nonnegative. Based on above techniques we obtain a new convex cutting plane model of the original objective function. Based on this new approximation the redistributed proximal bundle method is designed and the convergence of the proposed algorithm to a Clarke stationary point is proved. A simple numerical experiment is given to show the validity of the presented algorithm.

JEL Classification: 00A71; 90C30
  1. Funding: The first author was supported by the National Nature Science Foundation of China (61877032). The third author was supported by the National Nature Science Foundation of China (11601061) and the Fundamental Research Funds for the Central Universities of China (DUT16LK07). The fourth author was supported by the Science Foundation of Educational Committee of Liaoning Province (LQ2019019).

References

[1] A. Astorino, A. Fuduli, and M. Gaudioso, Margin maximization in spherical separation, Comput. Optim. Appl., 53 (2012), 301-322.10.1007/s10589-012-9486-7Suche in Google Scholar

[2] A. M. Bagirov, A method for minimization of quasidifferentiable functions. Optim. Methods Software, 17 (2002), 31-60.10.1080/10556780290027837Suche in Google Scholar

[3] A. Bagirov, N. Karmitsa, and M. M. Makela, Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer Int. Publishing, 2014.10.1007/978-3-319-08114-4Suche in Google Scholar

[4] A. M. Bagirov and J. Ugon, Codifferetial method for minimizing nonsmooth DC functions, J. Global Optim., 50 (2011), 3-22.10.1007/s10898-010-9569-xSuche in Google Scholar

[5] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.Suche in Google Scholar

[6] A. Daniilidis, C. Sagastizabal, and M. Solodov, Identifying structure of nonsmooth convex functions by the bundle techniques, SIAM.J. Optim., 20 (2009), No. 2, 820-840.10.1137/080729864Suche in Google Scholar

[7] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholters, Local convergence of SQP methods for mathematical programs with equilibrium constraints, SIAM J. Optim., 17 (2006), 259-286.10.1137/S1052623402407382Suche in Google Scholar

[8] A. Fudili, M. Gaudioso, and G. Giallombardo, A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Software, 19 (2004), No.1, 89-102.10.1080/10556780410001648112Suche in Google Scholar

[9] W. Hare and C. Lemarechal, A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim., 20 (2010), No. 5, 2442-2473.10.1137/090754595Suche in Google Scholar

[10] W. Hare, C. Lemarechal, and M. Solodov, A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl., 63 (2016), 1-28.10.1007/s10589-015-9762-4Suche in Google Scholar

[11] K. Holmberg and H. Tuy, A production-transportation problem with stochastic demand and concave production costs, Math. Prog., 85 (1999), 157-179.10.1007/978-3-642-46955-8_62Suche in Google Scholar

[12] R. Horst and N. V. Thoai, DC programming: Overview, J. Optim. Theory Appl., 103 (1999), 1-43.10.1023/A:1021765131316Suche in Google Scholar

[13] K.Joki, A. M. Bagirov, N. Karmitsa, and M. M. Makela, A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes, J. Global Optim., 68 (2017), 501-535.10.1007/s10898-016-0488-3Suche in Google Scholar

[14] K. C. Kiwiel, Proximity control in bundle method for convex nondifferentiable minimization, Math. Prog., 46 (1990), 105122.10.1007/BF01585731Suche in Google Scholar

[15] M. M. Makela, Survey of bundle methods for nonsmooth optimization, Optim. Methods Software, 17 (2002), 1-29.10.1080/10556780290027828Suche in Google Scholar

[16] M. M. Makela and P. Neittaanmaki, Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control, World Scientific Publishing Co., Singapore, 1992.10.1142/1493Suche in Google Scholar

[17] C.Pey-chun, P.Hansen, B. Jaumard, and H.Tuy, Solution of the multisource Weber and conditional Weber problems by D.C. programming, Oper. Res., 46 (1998), 548-562.10.1287/opre.46.4.548Suche in Google Scholar

[18] B.T. Polyak, Introduction to Optimization. Optimization Software Inc., Publications Division, New York, 1987.Suche in Google Scholar

[19] R. T. Rockafellar, ConvexAnalysis, Princeton University Press, Princeton, 1970.10.1515/9781400873173Suche in Google Scholar

[20] R. T. Rockafellar and J. J.-B. Wets, Variational Analysis, Fundamental Principles of Mathematical Sciences, Vol. 317. Springer, Berlin, 1998.10.1007/978-3-642-02431-3Suche in Google Scholar

[21] H. Schramm and J. Zowe, Aversion of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992), 121-152.10.1137/0802008Suche in Google Scholar

[22] J. Shen, X.-Q. Liu, F.-F. Guo, S.-X. Wang, An approximate redistributed proximal bundle method with inexact data for minimizing nonsmooth nonconvexfunctions. Math. Problems Engrg., 2015 (2015), Article ID 215310, 9 p.10.1155/2015/215310Suche in Google Scholar

[23] J. Shen, Z.-Q.Xia, L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization. Nonlinear Analysis A: Theory, Method and Applications, 66 (2007), 2016-2027.10.1016/j.na.2006.02.039Suche in Google Scholar

[24] J. C. O. Souza, P. R. Oliveira, and A. Soubeyran, Global convergence of a proximal linearized algorithm for difference of convex functions, Optim. Lett., 10 (2016), 1529-1539.10.1007/s11590-015-0969-1Suche in Google Scholar

[25] T. H. A. Le and P. D. Tao, The DC (difference of convex functions) programming and DCA revised with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), 23-46.10.1007/s10479-004-5022-1Suche in Google Scholar

[26] J. F. Toland, On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, Memoire, 60 (1979), 173-180.Suche in Google Scholar

[27] H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Publisher, Dordrescht, 1st ed., 1998.10.1007/978-1-4757-2809-5Suche in Google Scholar

Received: 2019-04-06
Revised: 2020-09-30
Accepted: 2021-04-05
Published Online: 2021-07-03
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2019-0049/html?lang=de
Button zum nach oben scrollen