Startseite Mathematik On sinc quadrature approximations of fractional powers of regularly accretive operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On sinc quadrature approximations of fractional powers of regularly accretive operators

  • Andrea Bonito , Wenyu Lei EMAIL logo und Joseph E. Pasciak
Veröffentlicht/Copyright: 19. März 2018

Abstract

We consider the finite element approximation of fractional powers of regularly accretive operators via the Dunford–Taylor integral approach. We use a sinc quadrature scheme to approximate the Balakrishnan representation of the negative powers of the operator as well as its finite element approximation. We improve the exponentially convergent error estimates from [A. Bonito and J. E. Pasciak, IMA J. Numer. Anal., 37 (2016), No. 3, 1245–1273] by reducing the regularity required on the data. Numerical experiments illustrating the new theory are provided.

JEL Classification: 65N30; 35S15; 65N15; 65R20; 65N12
  1. Funding: The first and second authors are partially supported by NSF grant DMS-1254618.

Acknowledgment

The authors would like to thank R. H. Nochetto for pointing out the possible suboptimality in [10], thereby prompting the current analysis.

References

[1] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal. 55 (2017), No. 2, 472–495.10.1137/15M1033952Suche in Google Scholar

[2] M. S. Agranovich and A. M. Selitskii, Fractional powers of operators corresponding to coercive problems in Lipschitz domains, Funct. Anal. Appl. 47 (2013), No. 2, 83–95.10.1007/s10688-013-0013-0Suche in Google Scholar

[3] H. Antil, J. Pfefferer, and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization, Preprint arXiv:1703.05256 (2017).10.4310/CMS.2018.v16.n5.a11Suche in Google Scholar

[4] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419–437.10.2140/pjm.1960.10.419Suche in Google Scholar

[5] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otarola, A. J. Salgado, and C. Schwab, Tensor FEM for spectral fractional diffusion, Preprint arXiv:1707.07367 (2017).10.1007/s10208-018-9402-3Suche in Google Scholar

[6] R. E. Bank and H. Yserentant, On the H1 -stability of the L2-projection onto finite element spaces, Numer. Math. 126 (2014), No. 2, 361–381.10.1007/s00211-013-0562-4Suche in Google Scholar

[7] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otarola, and A. J. Salgado, Numerical methods for fractional diffusion, Preprint arXiv:1707.01566 (2017).10.1007/s00791-018-0289-ySuche in Google Scholar

[8] A. Bonito, W. Lei, and J. E. Pasciak, Numerical approximation of the integral fractional Laplacian, Preprint arXiv:1707.04290 (2017).10.1007/s00211-019-01025-xSuche in Google Scholar

[9] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp. 84 (2015), No. 295, 2083–2110.10.1090/S0025-5718-2015-02937-8Suche in Google Scholar

[10] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators, IMA J. Numer. Anal. 37 (2017), No. 3,1245–1273.10.1093/imanum/drw042Suche in Google Scholar

[11] J. H. Bramble, J. E. Pasciak, and O. Steinbach, On the stability of the L2 projection in H1(Ω), Math. Comp. 71 (2002), No. 237, 147–156.10.1090/S0025-5718-01-01314-XSuche in Google Scholar

[12] M. Crouzeix and V. Thomée, The stability in Lp and Wp1 of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), No.178, 521–532.Suche in Google Scholar

[13] M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl. 66 (2013), No. 7,1245–1260.10.1016/j.camwa.2013.07.022Suche in Google Scholar

[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159, Springer-Verlag, New York, 2004.10.1007/978-1-4757-4355-5Suche in Google Scholar

[15] M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal. 8 (2005), No. 3, 323–341.Suche in Google Scholar

[16] M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, II. With nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), No. 4, 333–349.Suche in Google Scholar

[17] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan13 (1961), 246–274.10.2969/jmsj/01330246Suche in Google Scholar

[18] A. Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2009.Suche in Google Scholar

[19] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.10.1137/1.9781611971637Suche in Google Scholar

[20] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler, hp-finite elements for fractional diffusion, Preprint arXiv:1706.04066 (2017).10.1137/17M1135517Suche in Google Scholar

[21] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math. 15 (2015), No. 3, 733–791.10.1007/s10208-014-9208-xSuche in Google Scholar

[22] Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the time–space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput. 33 (2011), No. 3, 1159–1180.10.1137/100800634Suche in Google Scholar

Received: 2017-09-18
Revised: 2018-02-01
Accepted: 2018-03-14
Published Online: 2018-03-19
Published in Print: 2019-06-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2017-0116/pdf
Button zum nach oben scrollen