Startseite Buoyancy driven convection with a Cattaneo flux model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Buoyancy driven convection with a Cattaneo flux model

  • Brian Straughan , Vincenzo Tibullo EMAIL logo und Francesca Passarella
Veröffentlicht/Copyright: 14. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We review models for convective motion which have a flux law of Cattaneo type. This includes thermal convection where the heat flux law is a Cattaneo one. We additionally analyse models where the convective motion is due to a density gradient caused by a concentration of solute. The usual Fick’s law in this case is replaced by a Cattaneo one involving the flux of solute and the concentration gradient. Other effects such as rotation, the presence of a magnetic field, Guyer–Krumhansl terms, or Kelvin–Voigt theories are briefly introduced.


Corresponding author: Vincenzo Tibullo, Dipartimento di Matematica, Università di Salerno, Fisciano, Italy, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Modena, vol. 3, pp. 83–101, 1948.Suche in Google Scholar

[2] P. Galenko and D. Jou, “Diffuse-interface model for rapid phase transformations in nonequilibrium systems,” Phys. Rev. E, vol. 71, p. 046125, 2005. https://doi.org/10.1103/physreve.71.046125.Suche in Google Scholar

[3] D. Graffi, “Sopra alcuni fenomeni ereditari dell’elettrologia,” Rend. Ist. Lomb. Sc. Lett., vol. 19, pp. 151–166, 1936.Suche in Google Scholar

[4] M. Fabrizio, “Dario Graffi in a complex historical period,” in Mathematicians in Bologna 1861 – 1960, S. Coen, Ed., Basel, Birkhauser, 2012.10.1007/978-3-0348-0227-7_7Suche in Google Scholar

[5] B. Straughan, Heat Waves, volume 177 of Appl. Math. Sci., New York, Springer, 2011.10.1007/978-1-4614-0493-4Suche in Google Scholar

[6] F. Franchi and B. Straughan, “Dario Graffi e la sua influenza sulla fisica matematica,” in Mathematics in Bologna after the War, Bologna, Italy, Academy of Bologna, Physical Sciences, Bologna University Press, 2023.Suche in Google Scholar

[7] I. Müller, “Zum paradoxon der wärmleitungsttheorie,” Z. Phys., vol. 198, pp. 329–344, 1967.10.1007/BF01326412Suche in Google Scholar

[8] N. Fox, “Low temperature effects and generalized thermoelasticity,” J. Inst. Maths. Appl., vol. 5, pp. 373–386, 1969. https://doi.org/10.1093/imamat/5.4.373.Suche in Google Scholar

[9] M. Carrassi and A. Morro, “A modified Navier–Stokes equation, and its consequences on sound dispersion,” Nuovo Cimento B, vol. 9, pp. 321–343, 1972. https://doi.org/10.1007/bf02734451.Suche in Google Scholar

[10] T. Ruggeri, “Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,” Acta Mech., vol. 47, pp. 167–183, 1983. https://doi.org/10.1007/bf01189206.Suche in Google Scholar

[11] A. Morro, “Evolution equations for dissipative bodies and hyperbolicity,” Acta Mech., vol. 48, pp. 227–231, 1983. https://doi.org/10.1007/bf01170421.Suche in Google Scholar

[12] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics, 4th ed. New York, Springer, 2010.10.1007/978-90-481-3074-0_2Suche in Google Scholar

[13] A. Sellitto, V. Zampoli, and P. M. Jordan, “Second sound beyond Maxwell–Cattaneo: nonlocal effects in hyperbolic heat transfer at the nanoscale,” Int. J. Eng. Sci., vol. 154, p. 103328, 2020. https://doi.org/10.1016/j.ijengsci.2020.103328.Suche in Google Scholar

[14] C. I. Christov and P. M. Jordan, “Heat conduction paradox involving second-sound propagation in moving media,” Phys. Rev. Lett., vol. 94, p. 154301, 2005. https://doi.org/10.1103/physrevlett.94.154301.Suche in Google Scholar

[15] A. Morro, “A thermodynamic approach to rate equations in continuum physics,” J. Phys. Sci. Appl., vol. 7, pp. 15–23, 2017. https://doi.org/10.17265/2159-5348/2017.06.003.Suche in Google Scholar

[16] G. Capriz and P. M. Mariano, “Objective fluxes in a multi-scale continuum description of sparse medium dynamics,” Phys. A, vol. 415, pp. 354–365, 2014. https://doi.org/10.1016/j.physa.2014.08.012.Suche in Google Scholar

[17] C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun., vol. 36, pp. 481–486, 2009. https://doi.org/10.1016/j.mechrescom.2008.11.003.Suche in Google Scholar

[18] M. Ciarletta and B. Straughan, “Uniqueness and structural stability for the Cattaneo–Christov equations,” Mech. Res. Commun., vol. 37, pp. 445–447, 2010. https://doi.org/10.1016/j.mechrescom.2010.06.002.Suche in Google Scholar

[19] V. Tibullo and V. Zampoli, “A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids,” Mech. Res. Commun., vol. 38, pp. 77–79, 2011. https://doi.org/10.1016/j.mechrescom.2010.10.008.Suche in Google Scholar

[20] B. Straughan and F. Franchi, “Bénard convection and the Cattaneo law of heat conduction,” Proc. Roy. Soc. Edinb. A, vol. 96, pp. 175–178, 1984. https://doi.org/10.1017/s0308210500020564.Suche in Google Scholar

[21] N. C. Papanicolaou, C. I. Christov, and P. M. Jordan, “The influence of thermal relaxation on the oscillatory properties of two-gradient convection in a vertical slot,” Eur. J. Mech. B Fluids, vol. 30, pp. 68–75, 2011. https://doi.org/10.1016/j.euromechflu.2010.09.003.Suche in Google Scholar

[22] M. Gentile and B. Straughan, “Thermal convection with a Cattaneo heat flux model,” to be published, 2023.10.1515/jnet-2023-0078Suche in Google Scholar

[23] A. Morro, “Modelling elastic heat conductors via objective rate equations,” Cont. Mech. Therm., vol. 30, pp. 1231–1243, 2018. https://doi.org/10.1007/s00161-017-0617-3.Suche in Google Scholar

[24] A. Morro, “Objective equations of heat conduction in deformable bodies,” Mech. Res. Commun., vol. 125, p. 103979, 2022. https://doi.org/10.1016/j.mechrescom.2022.103979.Suche in Google Scholar

[25] I. A. Eltayeb, “Stability of porous Bénard–Brinkman layer in local thermal non-equilibrium with Cattaneo effects in the solid,” Int. J. Therm. Sci., vol. 98, pp. 208–218, 2015. https://doi.org/10.1016/j.ijthermalsci.2015.06.021.Suche in Google Scholar

[26] I. A. Eltayeb, “Convective instabilities of Maxwell–Cattaneo fluids,” Proc. Roy. Soc. Lond. A, vol. 473, p. 20160712, 2017. https://doi.org/10.1098/rspa.2016.0712.Suche in Google Scholar

[27] I. A. Eltayeb, D. W. Hughes, and M. R. E. Proctor, “The convective instability of a Maxwell–Cattaneo fluid in the presence of a vertical magnetic field,” Proc. Roy. Soc. Lond. A, vol. 476, p. 20200494, 2020. https://doi.org/10.1098/rspa.2020.0494.Suche in Google Scholar PubMed PubMed Central

[28] D. W. Hughes, M. R. E. Proctor, and I. A. Eltayeb, “Maxwell–Cattaneo double diffusive convection: limiting cases,” J. Fluid Mech., vol. 927, p. A13, 2021. https://doi.org/10.1017/jfm.2021.721.Suche in Google Scholar

[29] D. W. Hughes, M. R. E. Proctor, and I. A. Eltayeb, “Rapidly rotating Maxwell–Cattaneo convection,” Phys. Rev. Fluids, vol. 7, p. 093502, 2022. https://doi.org/10.1103/physrevfluids.7.093502.Suche in Google Scholar

[30] J. J. Bissell, “On oscillatory convection with the Cattaneo–Christov hyperbolic heat flow model,” Proc. Roy. Soc. Lond. A, vol. 471, p. 20140845, 2015. https://doi.org/10.1098/rspa.2014.0845.Suche in Google Scholar PubMed PubMed Central

[31] J. J. Bissell, “Thermal convection in a magnetized conducting fluid with the Cattaneo–Christov heat flow model,” Proc. Roy. Soc. Lond. A, vol. 472, p. 20160649, 2016. https://doi.org/10.1098/rspa.2016.0649.Suche in Google Scholar PubMed PubMed Central

[32] F. Capone and J. A. Gianfrani, “Onset of convection in LTNE Darcy–Bénard anisotropic layer: Cattaneo effect in the solid,” Int. J. Nonlinear Mech., vol. 139, p. 103889, 2022. https://doi.org/10.1016/j.ijnonlinmec.2021.103889.Suche in Google Scholar

[33] M. Hema, I. S. Shivakumara, and M. Ravisha, “Double diffusive LTNE porous convection with Cattaneo effects in the solid,” Heat Tran., vol. 49, pp. 3613–3629, 2020. https://doi.org/10.1002/htj.21791.Suche in Google Scholar

[34] A. L. Mamatha, M. Ravisha, and I. S. Shivakumara, “Chaotic Cattaneo-LTNE porous convection,” Waves Random Complex Media, vol. 34, pp. 1–20, 2022. https://doi.org/10.1080/17455030.2022.2155320.Suche in Google Scholar

[35] P. M. Mariano, “Finite-speed heat propagation as a consequence of microstructural changes,” Continuum Mech. Therm., vol. 29, pp. 1241–1248, 2017. https://doi.org/10.1007/s00161-017-0577-7.Suche in Google Scholar

[36] D. Graffi, “Il teorema di unicità per i fluidi incompressibili, perfetti, eterogenei,” Rev. Unione Mat. Argentina, vol. 17, pp. 73–77, 1955.Suche in Google Scholar

[37] A. V. Kazhikhov and S. Smagulov, “The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid,” Sov. Phys. Dokl., vol. 22, pp. 249–250, 1977.Suche in Google Scholar

[38] H. Beirao da Veiga, “Diffusion on viscous fluids. Existence and asymptotic properties of solutions,” Ann. Scuola Norm. Sup. Pisa, vol. 10, pp. 341–351, 1983.Suche in Google Scholar

[39] F. Franchi and B. Straughan, “A comparison of the Graffi and Kazikhov–Smagulov models for top heavy pollution instability,” Adv. Water Resour., vol. 24, pp. 585–594, 2001. https://doi.org/10.1016/s0309-1708(00)00073-7.Suche in Google Scholar

[40] E. Barbera, C. Currò, and G. Valenti, “A hyperbolic model for the effects of urbanization on air pollution,” Appl. Math. Model., vol. 34, pp. 2192–2202, 2010. https://doi.org/10.1016/j.apm.2009.10.030.Suche in Google Scholar

[41] M. Gentile and B. Straughan, “Hyperbolic diffusion with Christov–Morro theory,” Math. Comput. Simulat., vol. 127, pp. 94–100, 2016. https://doi.org/10.1016/j.matcom.2012.07.010.Suche in Google Scholar

[42] P. Ván, A. Berezovski, T. Fülöp, et al.., “Guyer–Krumhansl heat conduction at room temperature,” Europhys. Lett., vol. 118, p. 50005, 2017. https://doi.org/10.1209/0295-5075/118/50005.Suche in Google Scholar

[43] V. A. Cimmelli, “Different thermodynamic theories and different heat conduction laws,” J. Non-Equilibrium Thermodyn., vol. 34, pp. 299–333, 2009. https://doi.org/10.1515/jnet.2009.016.Suche in Google Scholar

[44] V. A. Cimmelli, “Local versus nonlocal continuum theories of nonequilibrium thermodynamics: the Guyer–Krumhansl equation as an example,” ZAMP, vol. 72, p. 195, 2021. https://doi.org/10.1007/s00033-021-01625-4.Suche in Google Scholar

[45] I. Carlomagno, M. Di Domenico, and A. Sellitto, “High order fluxes in heat transfer with phonons and electrons: application to wave propagation,” Proc. Roy. Soc. Lond. A, vol. 477, p. 20210392, 2021. https://doi.org/10.1098/rspa.2021.0392.Suche in Google Scholar

[46] I. Carlomagno, V. A. Cimmelli, and D. Jou, “Tunable heat-flux rectification in graded nanowires in non-linear Guyer- Krumhansl regime,” Nanomaterials, vol. 13, p. 1442, 2023. https://doi.org/10.3390/nano13091442.Suche in Google Scholar PubMed PubMed Central

[47] A. Sellitto, V. A. Cimmelli, and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems, New York, Springer, 2016.10.1007/978-3-319-27206-1Suche in Google Scholar

[48] P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Ann. Phys., vol. 524, pp. 470–478, 2012. https://doi.org/10.1002/andp.201200042.Suche in Google Scholar

[49] T. Fülöp, R. Kovács, A. Lovas, et al.., “Emergence of non-Fourier hierarchies,” Entropy, vol. 20, p. 832, 2018. https://doi.org/10.3390/e20110832.Suche in Google Scholar PubMed PubMed Central

[50] A. Berezovski, “On the influence of microstructure on heat conduction in solids,” Int. J. Heat Mass Transfer, vol. 103, pp. 516–520, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.085.Suche in Google Scholar

[51] A. Berezovski, “Internal variables representation of generalized heat equations,” Continuum Mech. Thermodyn., vol. 31, pp. 1733–1741, 2019. https://doi.org/10.1007/s00161-018-0729-4.Suche in Google Scholar

[52] A. Famà, L. Restuccia, and P. Ván, “Generalized ballistic-conductive heat transport laws in three-dimensional isotropic materials,” Continuum Mech. Thermodyn., vol. 33, pp. 403–430, 2021. https://doi.org/10.1007/s00161-020-00909-w.Suche in Google Scholar

[53] P. Rogolino and V. A. Cimmelli, “Differential consequences of balance laws in extended irreversible thermodynamics of rigid heat conductors,” Proc. Roy. Soc. Lond. A, vol. 475, p. 20180482, 2021. https://doi.org/10.1098/rspa.2018.0482.Suche in Google Scholar PubMed PubMed Central

[54] G. Capriz, K. Wilmanski, and P. M. Mariano, “Exact and appropriate Maxwell–Cattaneo type descriptions of heat conduction: a comparative analysis,” Int. J. Heat Mass Transfer, vol. 175, p. 121362, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121362.Suche in Google Scholar

[55] M. Nunziata, B. Straughan, and V. Tibullo, “Pollution overturning instability in an incompressible fluid with a Maxwell–Cattaneo–Mariano model for the pollutant field,” to be published, 2023.10.1016/j.physd.2024.134116Suche in Google Scholar

[56] B. Straughan, “Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid,” Proc. Roy. Soc. Lond. A, vol. 469, p. 20130187, 2013. https://doi.org/10.1098/rspa.2013.0187.Suche in Google Scholar

Received: 2023-09-14
Accepted: 2023-10-27
Published Online: 2023-12-14
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2023-0078/html
Button zum nach oben scrollen