Startseite The effects of fractional time derivatives in bioheat conduction technique on tumor thermal therapy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effects of fractional time derivatives in bioheat conduction technique on tumor thermal therapy

  • Ibrahim Abbas EMAIL logo , Aatef Hobiny und Alaa El-Bary
Veröffentlicht/Copyright: 16. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The article utilizes the fractional bioheat model in spherical coordinates to explain the transfer of heat in living tissues during magnetic hyperthermia treatment for tumors. Maintaining therapeutic temperature is crucial in magnetic fluid hyperthermia, which requires accurate estimations of power dissipation to determine the appropriate number of magnetic particles required for treatment. To address this problem, a hybrid numerical approach that combines Laplace transforms, change of variables, and modified discretization techniques is proposed in this paper. The study investigates the impact of the fractional parameter and differences in thermophysical properties between diseased and healthy tissue. The numerical temperature results are presented in a graph, and their validity is demonstrated by comparing them with previous literature.


Corresponding author: Ibrahim Abbas, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; and Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt, E-mail:

Funding source: King Abdulaziz University

Award Identifier / Grant number: Unassigned

Acknowledgments

The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 71-130-1443).

  5. Data availability: Not applicable.

References

[1] P. Moroz, S. K. Jones, and B. N. Gray, “Magnetically mediated hyperthermia: current status and future directions,” Int. J. Hyperthermia, vol. 18, no. 4, pp. 267–284, 2002. https://doi.org/10.1080/02656730110108785.Suche in Google Scholar

[2] L. Chen, Y. Chu, Y. Zhang, F. Han, and J. Zhang, “Analysis of heat transfer characteristics of fractured surrounding rock in deep underground spaces,” Math. Probl. Eng., vol. 2019, p. 1926728, 2019. https://doi.org/10.1155/2019/1926728.Suche in Google Scholar

[3] F. A. Blyakhman, N. Buznikov, T. Sklyar, et al.., “Mechanical, electrical and magnetic properties of ferrogels with embedded iron oxide nanoparticles obtained by laser target evaporation: focus on multifunctional biosensor applications,” Sensors, vol. 18, no. 3, p. 872, 2018. https://doi.org/10.3390/s18030872.Suche in Google Scholar

[4] W. H. Gmeiner and S. Ghosh, “Nanotechnology for cancer treatment,” Nanotechnol. Rev., vol. 3, no. 2, pp. 111–122, 2014. https://doi.org/10.1515/ntrev-2013-0013.Suche in Google Scholar

[5] J. H. Grossman and S. E. McNeil, “Nanotechnology in cancer medicine,” Phys. Today, vol. 65, no. 8, pp. 38–42, 2012. https://doi.org/10.1063/pt.3.1678.Suche in Google Scholar

[6] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 1948. https://doi.org/10.1152/jappl.1948.1.2.93.Suche in Google Scholar

[7] M. A. Ezzat, N. S. AlSowayan, Z. I. A. Al-Muhiameed, and S. M. Ezzat, “Fractional modelling of Pennes’ bioheat transfer equation,” Heat Mass Transfer, vol. 50, no. 7, pp. 907–914, 2014. https://doi.org/10.1007/s00231-014-1300-x.Suche in Google Scholar

[8] M. A. Ezzat, A. A. El‐bary, and N. S. Al‐sowayan, “Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface,” Anim. Sci. J., vol. 87, no. 10, pp. 1304–1311, 2016. https://doi.org/10.1111/asj.12568.Suche in Google Scholar

[9] A. Ghanmi and I. A. Abbas, “An analytical study on the fractional transient heating within the skin tissue during the thermal therapy,” J. Therm. Biol., vol. 82, pp. 229–233, 2019. https://doi.org/10.1016/j.jtherbio.2019.04.003.Suche in Google Scholar

[10] S. Mondal, A. Sur, and M. Kanoria, “Transient heating within skin tissue due to time-dependent thermal therapy in the context of memory dependent heat transport law,” Mech. Based Des. Struct. Mach., vol. 49, no. 2, pp. 271–285, 2021.10.1080/15397734.2019.1686992Suche in Google Scholar

[11] A. Andreozzi, L. Brunese, M. Iasiello, C. Tucci, and G. P. Vanoli, “Modeling heat transfer in tumors: a review of thermal therapies,” Ann. Biomed. Eng., vol. 47, no. 3, pp. 676–693, 2019. https://doi.org/10.1007/s10439-018-02177-x.Suche in Google Scholar

[12] M. Mallory, E. Gogineni, G. C. Jones, L. Greer, and C. B. Simone, “Therapeutic hyperthermia: the old, the new, and the upcoming,” Crit. Rev. Oncol. Hematol., vol. 97, pp. 56–64, 2016. https://doi.org/10.1016/j.critrevonc.2015.08.003.Suche in Google Scholar

[13] M. J. Ware, L. P. Nguyen, J. J. Law, et al.., “A new mild hyperthermia device to treat vascular involvement in cancer surgery,” Sci. Rep., vol. 7, no. 1, p. 11299, 2017. https://doi.org/10.1038/s41598-017-10508-6.Suche in Google Scholar

[14] A. Paul, A. Narasimhan, F. J. Kahlen, and S. K. Das, “Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating,” J. Therm. Biol., vol. 41, pp. 77–87, 2014. https://doi.org/10.1016/j.jtherbio.2014.02.010.Suche in Google Scholar

[15] C. Cattaneo, “A form of heat conduction equation which eliminates the paradox of instantaneous propagation,” Compt. Rendus, vol. 247, no. 4, pp. 431–433, 1958.Suche in Google Scholar

[16] P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” Compt. Rendus, vol. 246, pp. 3154–3155, 1958.Suche in Google Scholar

[17] F. S. Alzahrani and I. A. Abbas, “Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data,” J. Therm. Biol., vol. 85, p. 102421, 2019. https://doi.org/10.1016/j.jtherbio.2019.102421.Suche in Google Scholar

[18] A. Hobiny and I. Abbas, “Analytical solutions of fractional bioheat model in a spherical tissue,” Mech. Based Des. Struct. Mach., vol. 49, no. 3, pp. 430–439, 2019. https://doi.org/10.1080/15397734.2019.1702055.Suche in Google Scholar

[19] R. Kumar, A. K. Vashishth, and S. Ghangas, “Nonlocal heat conduction approach in a bi-layer tissue during magnetic fluid hyperthermia with dual phase lag model,” Biomed. Mater. Eng., vol. 30, no. 4, pp. 387–402, 2019. https://doi.org/10.3233/bme-191061.Suche in Google Scholar

[20] H. Ahmadikia, R. Fazlali, and A. Moradi, “Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue,” Int. Commun. Heat Mass Transfer, vol. 39, no. 1, pp. 121–130, 2012. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.016.Suche in Google Scholar

[21] B. Kundu, “Exact analysis for propagation of heat in a biological tissue subject to different surface conditions for therapeutic applications,” Appl. Math. Comput., vol. 285, pp. 204–216, 2016. https://doi.org/10.1016/j.amc.2016.03.037.Suche in Google Scholar

[22] A. Nakayama and F. Kuwahara, “A general bioheat transfer model based on the theory of porous media,” Int. J. Heat Mass Transfer, vol. 51, no. 11, pp. 3190–3199, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.030.Suche in Google Scholar

[23] N. Afrin, J. Zhou, Y. Zhang, D. Y. Tzou, and J. K. Chen, “Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model,” Numer. Heat Transfer, Part A, vol. 61, no. 7, pp. 483–501, 2012. https://doi.org/10.1080/10407782.2012.667648.Suche in Google Scholar

[24] P. Hooshmand, A. Moradi, and B. Khezry, “Bioheat transfer analysis of biological tissues induced by laser irradiation,” Int. J. Therm. Sci., vol. 90, pp. 214–223, 2015. https://doi.org/10.1016/j.ijthermalsci.2014.12.004.Suche in Google Scholar

[25] K.-C. Liu and Y.-S. Chen, “Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model,” Int. J. Therm. Sci., vol. 103, pp. 1–9, 2016. https://doi.org/10.1016/j.ijthermalsci.2015.12.005.Suche in Google Scholar

[26] F. de Monte and A. Haji-Sheikh, “Bio-heat diffusion under local thermal non-equilibrium conditions using dual-phase lag-based Green’s functions,” Int. J. Heat Mass Transfer, vol. 113, pp. 1291–1305, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.006.Suche in Google Scholar

[27] L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer, vol. 54, no. 25, pp. 5459–5469, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.045.Suche in Google Scholar

[28] A. Kabiri and M. R. Talaee, “Thermal field and tissue damage analysis of moving laser in cancer thermal therapy,” Lasers Med. Sci., vol. 36, no. 3, pp. 583–597, 2021. https://doi.org/10.1007/s10103-020-03070-7.Suche in Google Scholar

[29] M. Ragab, A. E. Abouelregal, H. F. AlShaibi, and R. A. Mansouri, “Heat transfer in biological spherical tissues during hyperthermia of magnetoma,” Biology, vol. 10, no. 12, p. 1259, 2021. https://doi.org/10.3390/biology10121259.Suche in Google Scholar

[30] A. D. Hobiny and I. A. Abbas, “Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source,” Int. J. Heat Mass Transfer, vol. 124, pp. 1011–1014, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.Suche in Google Scholar

[31] T. Saeed and I. Abbas, “Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data,” Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1287–1297, 2020. https://doi.org/10.1080/15397734.2020.1749068.Suche in Google Scholar

[32] A. Hobiny and I. Abbas, “A GN model on photothermal interactions in a two-dimensions semiconductor half space,” Results Phys., vol. 15, p. 102588, 2019. https://doi.org/10.1016/j.rinp.2019.102588.Suche in Google Scholar

[33] I. A. Abbas and R. Kumar, “2D deformation in initially stressed thermoelastic half-space with voids,” Steel Compos. Struct., vol. 20, no. 5, pp. 1103–1117, 2016. https://doi.org/10.12989/scs.2016.20.5.1103.Suche in Google Scholar

[34] F. Alzahrani, A. Hobiny, I. Abbas, and M. Marin, “An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities,” Symmetry, vol. 12, no. 5, p. 848, 2020. https://doi.org/10.3390/sym12050848.Suche in Google Scholar

[35] I. Abbas, A. Hobiny, and M. Marin, “Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 1369–1376, 2020. https://doi.org/10.1080/16583655.2020.1824465.Suche in Google Scholar

[36] S. M. Abo-Dahab, A. E. Abouelregal, and M. Marin, “Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam,” Symmetry, vol. 12, no. 7, p. 1094, 2020. https://doi.org/10.3390/sym12071094.Suche in Google Scholar

[37] M. I. Othman, M. Fekry, and M. Marin, “Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating,” Struct. Eng. Mech., vol. 73, no. 6, pp. 621–629, 2020.Suche in Google Scholar

[38] M. Marin, A. Öchsner, S. Vlase, D. O. Grigorescu, and I. Tuns, “Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies,” Contin. Mech. Thermodyn., vol. 35, pp. 1–11, 2023. https://doi.org/10.1007/s00161-023-01220-0.Suche in Google Scholar

[39] B. Datsko, I. Podlubny, and Y. Povstenko, “Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact,” Mathematics, vol. 7, no. 5, p. 433, 2019. https://doi.org/10.3390/math7050433.Suche in Google Scholar

[40] Y. Povstenko and M. Ostoja-Starzewski, “Fractional telegraph equation under moving time-harmonic impact,” Int. J. Heat Mass Transfer, vol. 182, p. 121958, 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121958.Suche in Google Scholar

[41] P.-J. Cheng and K.-C. Liu, “Numerical analysis of bio-heat transfer in a spherical tissue,” J. Appl. Sci., vol. 9, no. 5, pp. 962–967, 2009. https://doi.org/10.3923/jas.2009.962.967.Suche in Google Scholar

[42] F. Xu, K. Seffen, and T. Lu, “Non-Fourier analysis of skin biothermomechanics,” Int. J. Heat Mass Transfer, vol. 51, no. 9, pp. 2237–2259, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.Suche in Google Scholar

[43] H. Stehfest, “Algorithm 368: numerical inversion of Laplace transforms [D5],” Commun. ACM, vol. 13, no. 1, pp. 47–49, 1970. https://doi.org/10.1145/361953.361969.Suche in Google Scholar

[44] S. Mondal, A. Sur, and M. Kanoria, “A graded spherical tissue under thermal therapy : the treatment of cancer cells,” Waves Random Complex Media, vol. 32, no. 1, pp. 488–507, 2022. https://doi.org/10.1080/17455030.2020.1779388.Suche in Google Scholar

[45] W. Andrä, C. d’Ambly, R. Hergt, I. Hilger, and W. Kaiser, “Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 197–203, 1999. https://doi.org/10.1016/s0304-8853(98)00552-6.Suche in Google Scholar

Received: 2023-08-07
Accepted: 2023-10-18
Published Online: 2023-11-16
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2023-0065/html
Button zum nach oben scrollen