Startseite A practical upper-bound efficiency model for solar power plants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A practical upper-bound efficiency model for solar power plants

  • Eduardo González-Mora ORCID logo EMAIL logo , Ram Poudel und María Dolores Durán-García ORCID logo
Veröffentlicht/Copyright: 27. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A generalized model for the maximum work rate extractable from the Sun is developed considering a reversible and an endoreversible system to define a more practical upper-bound efficiency for the conversion of solar radiation into work and power. This model is based on a photo-thermal work extractor in communication with a high-temperature radiation reservoir and a low-temperature heat sink. Following the model, a parametric analysis of the concentration acceptance product (ξ) and thermal conductance is performed to identify the interdependence of variables for the solar exergy. The results are compared with existing models to provide a practical baseline of work and power extractable from concentrated solar power plants (CSP) technologies. Therefore, it is possible to quantify the irreversibilities of an idealized thermodynamic system operating between the Sun and the absorber (via radiative transfer) and the environment (via convective transfer).


Corresponding author: Eduardo González-Mora, Facultad de Ingeniería, Ingeniería en Sistemas Energéticos Sustentables, Universidad Autónoma del Estado de México, Toluca, México, E-mail:

Funding source: CONACyT Graduate Scholarship for EGM https://doi.org/10.13039/501100003141

Award Identifier / Grant number: 863595

Acknowledgement

EGM would like to acknowledge the participants at Thermodynamics 2.0 | 2020 and 2022 conferences for the fruitful discussions about finite-time thermodynamics.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: CONACyT Graduate Scholarship for EGM (863595). https://doi.org/10.13039/501100003141.

  3. Conflict of interest statement: The authors have no conflicts to disclose.

References

[1] A. Bejan, Freedom and Evolution, Cham, Springer International Publishing, 2020.10.1007/978-3-030-34009-4Suche in Google Scholar

[2] A. Sharma, “A comprehensive study of solar power in India and world,” Renewable Sustainable Energy Rev., vol. 15, no. 4, pp. 1767–1776, 2011. https://doi.org/10.1016/j.rser.2010.12.017.Suche in Google Scholar

[3] M. H. Ahmed and A. M. A. Amin, “Thermal analysis of the performance of linear fresnel solar concentrator,” J. Clean Energy Technol., vol. 4, no. 5, pp. 316–320, 2015. https://doi.org/10.18178/JOCET.2016.4.5.304.Suche in Google Scholar

[4] D. Arvizu, P. Balaya, L. Cabzeza, et al.., “Direct solar energy,” in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, O. Edenhofer, R. Pichs-Madruga, Y. Sokona, Eds., et al.., Cambridge, Cambridge University Press, 2011, pp. 333–400.Suche in Google Scholar

[5] M. Bošnjaković and V. Tadijanović, “Environment impact of a concentrated solar power plant,” Teh. Glas., vol. 13, no. 1, pp. 68–74, 2019. https://doi.org/10.31803/tg-20180911085644.Suche in Google Scholar

[6] N. Caldés and Y. Lechón, “Socio-economic and environmental assessment of concentrating solar power systems,” in Concentrating Solar Power Technology, 2nd ed. Amsterdam, Elsevier, 2021, pp. 127–162.10.1016/B978-0-12-819970-1.00003-7Suche in Google Scholar

[7] IRENA, Renewable Power Generation Costs in 2021, Abu Dhabi, International Renewable Energy Agency, Tech. Rep., 2022. Available at: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.Suche in Google Scholar

[8] K. Lovegrove and W. Stein, “Introduction to concentrating solar power technology,” in Concentrating Solar Power Technology, K. Lovegrove and W. Stein, 2nd ed. Amsterdam, Elsevier, 2021, Chap. 1, pp. 3–17.10.1016/B978-0-12-819970-1.00012-8Suche in Google Scholar

[9] M. Schlecht and R. Meyer, “Site selection and feasibility analysis for concentrating solar power systems,” in Concentrating Solar Power Technology, 2nd ed. Amsterdam, Elsevier, 2021, pp. 99–125.10.1016/B978-0-12-819970-1.00015-3Suche in Google Scholar

[10] NREL, Concentrating Solar Power Projects, 2013. Available at: https://solarpaces.nrel.gov/ [accessed: Sep. 29, 2020].Suche in Google Scholar

[11] IRENA, Solar Energy, 2022. Available at: https://www.irena.org/solar [accessed: Aug. 13, 2022].Suche in Google Scholar

[12] T. J. Kotas, The Exergy Method of Thermal Plant Analysis, Amsterdam, Elsevier, 1985, pp. 29–56.10.1016/B978-0-408-01350-5.50009-XSuche in Google Scholar

[13] J. Szargut, Exergy Method: Technical and Ecological Applications, vol. 18, Southampton, WIT press, 2005.Suche in Google Scholar

[14] E. Rodríguez, J. M. Cardemil, A. R. Starke, and R. Escobar, “Modelling the exergy of solar radiation: a review,” Energies, vol. 15, no. 4, p. 1477, 2022. https://doi.org/10.3390/en15041477.Suche in Google Scholar

[15] R. Petela, “Eksergia promieniowania cieplnego,” Ph.D. thesis, Gliwice, Faculty of Mechanical Energy Technology, Silesian Technical University, 1961.Suche in Google Scholar

[16] W. H. Press, “Theoretical maximum for energy from direct and diffuse sunlight,” Nature, vol. 264, no. 5588, pp. 734–735, 1976. https://doi.org/10.1038/264734a0.Suche in Google Scholar

[17] P. T. Landsberg and J. R. Mallinson, “Thermodynamic constraints, effective temperatures and solar cells,” in International Conference on Solar Electricity, 1976, pp. 27–42.Suche in Google Scholar

[18] S. Kabelac, “A new look at the maximum conversion efficiency of black-body radiation,” Sol. Energy, vol. 46, no. 4, pp. 231–236, 1991. https://doi.org/10.1016/0038-092x(91)90067-7.Suche in Google Scholar

[19] V. Badescu, “Simple upper bound efficiencies for endoreversible conversion of thermal radiation,” J. Non-Equilib. Thermodyn., vol. 24, no. 2, pp. 196–202, 1999. https://doi.org/10.1515/JNET.1999.011.Suche in Google Scholar

[20] Y. Candau, “On the exergy of radiation,” Sol. Energy, vol. 75, no. 3, pp. 241–247, 2003. https://doi.org/10.1016/j.solener.2003.07.012.Suche in Google Scholar

[21] D. C. Spanner, Introduction to Thermodynamics. Experimental Botany: An International Series of Monographs, Massachusetts, Academic Press, 1964.Suche in Google Scholar

[22] N. A. Leontovich, “Maximum efficiency of direct utilization of radiation,” Sov. Phys. Usp., vol. 17, no. 6, pp. 963–964, 1975. https://doi.org/10.1070/pu1975v017n06abeh004417.Suche in Google Scholar

[23] J. A. Gribik and J. F. Osterle, “The second law efficiency of solar energy conversion,” J. Sol. Energy Eng., vol. 106, no. 1, pp. 16–21, 1984. https://doi.org/10.1115/1.3267555.Suche in Google Scholar

[24] J. E. Parrott, “Theoretical upper limit to the conversion efficiency of solar energy,” Sol. Energy, vol. 21, no. 3, pp. 227–229, 1978. https://doi.org/10.1016/0038-092X(78)90025-7.Suche in Google Scholar

[25] S. M. Jeter, “Maximum conversion efficiency for the utilization of direct solar radiation,” Sol. Energy, vol. 26, no. 3, pp. 231–236, 1981. https://doi.org/10.1016/0038-092x(81)90207-3.Suche in Google Scholar

[26] A. Bejan, “Unification of three different theories concerning the ideal conversion of enclosed radiation,” J. Sol. Energy Eng., vol. 109, no. 1, pp. 46–51, 1987. https://doi.org/10.1115/1.3268177.Suche in Google Scholar

[27] J. Singh and S. P. Foo, “On the thermodynamic efficiency of solar energy converters: solar cells,” J. Appl. Phys., vol. 59, no. 5, pp. 1678–1681, 1986. https://doi.org/10.1063/1.336430.Suche in Google Scholar

[28] V. Bădescu, “How much work can be extracted from a radiation reservoir?” Phys. A, vol. 410, pp. 110–119, 2014. https://doi.org/10.1016/j.physa.2014.05.024.Suche in Google Scholar

[29] C. Zamfirescu and I. Dincer, “How much exergy one can obtain from incident solar radiation?” J. Appl. Phys., vol. 105, no. 4, p. 044911, 2009. https://doi.org/10.1063/1.3081637.Suche in Google Scholar

[30] T. Baracu, M. Patrascu, C. Teodosiu, et al.., “Deterministic matrix-based radiative design using a new general formulation of exergy and exergy efficiency for hybrid solar collectors,” Appl. Therm. Eng., vol. 182, p. 115318, 2021. https://doi.org/10.1016/j.applthermaleng.2020.115318.Suche in Google Scholar

[31] J. E. Parrott, “Letter to the editor,” Sol. Energy, vol. 22, no. 6, pp. 572–573, 1979. https://doi.org/10.1016/0038-092X(79)90033-1.Suche in Google Scholar

[32] A. Wexler, “Letter to the editor,” Sol. Energy, vol. 22, no. 6, p. 572, 1979. https://doi.org/10.1016/0038-092X(79)90032-X.Suche in Google Scholar

[33] R. Zhang, Y. Zhou, B. Xiang, et al.., “Scalable carbon black enhanced nanofiber network films for high-efficiency solar steam generation,” Adv. Mater. Interfaces, vol. 8, no. 24, p. 2101160, 2021. https://doi.org/10.1002/admi.202101160.Suche in Google Scholar

[34] M. Temiz and I. Dincer, “A newly developed solar-based cogeneration system with energy storage and heat recovery for sustainable data centers: energy and exergy analyses,” Sustain. Energy Technol. Assess., vol. 52, p. 102145, 2022. https://doi.org/10.1016/j.seta.2022.102145.Suche in Google Scholar

[35] M. J. Montes, R. Abbas, R. Barbero, and A. Rovira, “A new design of multi-tube receiver for Fresnel technology to increase the thermal performance,” Appl. Therm. Eng., vol. 204, p. 117970, 2022. https://doi.org/10.1016/j.applthermaleng.2021.117970.Suche in Google Scholar

[36] Y. Khan and R. S. Mishra, “Performance analysis of solar driven combined recompression main compressor intercooling supercritical CO2 cycle and organic Rankine cycle using low GWP fluids,” Energy Built Environ., vol. 3, no. 4, pp. 496–507, 2022. https://doi.org/10.1016/j.enbenv.2021.05.004.Suche in Google Scholar

[37] W. Bai, H. Li, X. Zhang, et al.., “Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants,” Energy, vol. 261, p. 124780, 2022. https://doi.org/10.1016/j.energy.2022.124780.Suche in Google Scholar

[38] M. Temiz and I. Dincer, “Development of solar and wind based hydrogen energy systems for sustainable communities,” Energy Convers. Manage., vol. 269, p. 116090, 2022. https://doi.org/10.1016/j.enconman.2022.116090.10.1016/j.enconman.2022.116090Suche in Google Scholar

[39] A. Bejan, Advanced Engineering Thermodynamics, 4th ed. N. J. Hoboken, Ed., New Jersey, Wiley, 2016.10.1002/9781119245964Suche in Google Scholar

[40] E. P. Gyftopoulos and G. P. Beretta, Thermodynamics: Foundations and Applications, New York, Dover, 2005.Suche in Google Scholar

[41] S. Carnot, Réflexions sur la puissance motrice du feu. Académie internationale d’histoire des sciences, Paris, Collection des travaux, 1824.Suche in Google Scholar

[42] J. H. Cotterill, The Steam Engine Considered as a Thermodynamic Machine: A Treatise on the Thermodynamic Efficiency of Steam Engines, 2nd ed. London, E. & F. N. Spon, 1896.Suche in Google Scholar

[43] P. Chambadal, Récupération de chaleura la sortie d’un réacteur, Chapter 3, Paris, Armand Colin, 1957.Suche in Google Scholar

[44] I. I. Novikov, “Efficiency of an atomic power generating installation,” Sov. J. At. Energy, vol. 3, no. 11, pp. 1269–1272, 1957. https://doi.org/10.1007/BF01507240.Suche in Google Scholar

[45] H. A. Müser, “Thermodynamische behandlung von elektronenprozessen in halbleiter-randschichten,” Z. Phys., vol. 148, no. 3, pp. 380–390, 1957.10.1007/BF01325571Suche in Google Scholar

[46] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 43, no. 1, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Suche in Google Scholar

[47] G. De Mey and A. De Vos, “On the optimum efficiency of endoreversible thermodynamic processes,” J. Phys. D: Appl. Phys., vol. 27, no. 4, pp. 736–739, 1994. https://doi.org/10.1088/0022-3727/27/4/010.Suche in Google Scholar

[48] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford, Oxford Science Publications. Oxford University Press on Demand, 1992.Suche in Google Scholar

[49] M. Castañs, “Comments on “Maximum conversion efficiency for the utilization of direct solar radiation”,” Sol. Energy, vol. 30, no. 3, p. 293, 1983. https://doi.org/10.1016/0038-092X(83)90160-3.Suche in Google Scholar

[50] N. D. Gudkov, “Comments on “A new look at the maximum conversion effieciency of black-body radiation”,” Sol. Energy, vol. 57, no. 4, pp. 335–337, 1996. https://doi.org/10.1016/S0038-092X(96)00105-3.Suche in Google Scholar

[51] S. Kabelac, “Author’s reply…,” Sol. Energy, vol. 57, no. 4, pp. 337–338, 1996. https://doi.org/10.1016/S0038-092X(96)90055-9.Suche in Google Scholar

[52] A. De Vos and H. Pauwels, “Comment on a controversy between M. Castañs and S. Jeter,” Sol. Energy, vol. 33, no. 1, pp. 91–92, 1984. https://doi.org/10.1016/0038-092x(84)90122-1.Suche in Google Scholar

[53] A. De Vos and H. Pauwels, “Discussion: “The second law efficiency of solar energy conversion” (Gribik, J. A., and Osterle, J. F., 1984, ASME J. Sol. Energy Eng., 106, pp. 16–21),” J. Sol. Energy Eng., vol. 108, no. 1, pp. 80–83, 1986. https://doi.org/10.1115/1.3268070.Suche in Google Scholar

[54] V. Bădescu, “Discussion: “Unification of three different theories concerning the ideal conversion of enclosed radiation” (Bejan, A., 1987, ASME J. Sol. Energy Eng., 109, pp. 46–51),” J. Sol. Energy Eng., vol. 110, no. 4, pp. 349–350, 1988. https://doi.org/10.1115/1.3268279.Suche in Google Scholar

[55] S. E. Wright, M. Rosen, D. Scott, and J. Haddow, “The exergy flux of radiative heat transfer for the special case of blackbody radiation,” Exergy Int. J., vol. 2, no. 1, pp. 24–33, 2002. https://doi.org/10.1016/S1164-0235(01) 00040-1.10.1016/S1164-0235(01)00040-1Suche in Google Scholar

[56] R. Petela, “Exergy of undiluted thermal radiation,” Sol. Energy, vol. 74, no. 6, pp. 469–488, 2003. https://doi.org/10.1016/s0038-092x(03)00226-3.Suche in Google Scholar

[57] V. Bădescu, “Letter to the editor,” Sol. Energy, vol. 76, no. 4, pp. 509–511, 2004. https://doi.org/10.1016/j.solener. 2003.10.002.10.1016/j.solener.2003.10.002Suche in Google Scholar

[58] V. Bădescu, “Comments on “A new look at the maximum conversion efficiency of black body radiation” by S. Kabelac Solar Energy 46(4), 231–236 (1991),” Sol. Energy, vol. 50, no. 4, p. 379, 1993. https://doi.org/10.1016/0038-092X(93)90031-I.Suche in Google Scholar

[59] S. Kabelac, “Author’s reply…,” Sol. Energy, vol. 50, no. 4, pp. 379–380, 1993. https://doi.org/10.1016/0038-092X(93)90032-J.Suche in Google Scholar

[60] C. Essex, R. McKitrick, and B. Andresen, “Does a global temperature exist?” J. Non-Equilib. Thermodyn., vol. 32, no. 1, pp. 1–27, 2007. https://doi.org/10.1515/JNET.2007.001.Suche in Google Scholar

[61] P. T. Landsberg and V. Bădescu, “The geometrical factor of spherical radiation sources,” Europhys. Lett., vol. 50, no. 6, pp. 816–822, 2000. https://doi.org/10.1209/epl/i2000-00554-7.Suche in Google Scholar

[62] V. Badescu, “Thermodynamics of photovoltaics,” in Reference Module in Earth Systems and Environmental Sciences, Amsterdam, Elsevier, 2017. Available at: https://www.sciencedirect.com/science/article/pii/B9780124095489048065.10.1016/B978-0-12-409548-9.04806-5Suche in Google Scholar

[63] V. Bădescu, “Personal communication,” 2022.Suche in Google Scholar

[64] M. Troudi, N. Sghaier, A. Kalboussi, and A. Souifi, “Analysis of photogenerated random telegraph signal in single electron detector (photo-SET),” Opt. Express, vol. 18, no. 1, pp. 1–9, 2010. https://doi.org/10.1364/OE.18.000001.Suche in Google Scholar PubMed

[65] J. C. Miñano, P. Benítez, A. Cvetkovic, R. Mohedano, “SMS 3D design method,” in Illumination Engineering, New Jersey, John Wiley & Sons, 2013, Chap. 4, pp. 101–146. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118462539.ch4.10.1002/9781118462539.ch4Suche in Google Scholar

[66] A. Bejan, Heat Transfer: Evolution, Design and Performance, New Jersey, John Wiley & Sons, 2022.Suche in Google Scholar

[67] G. F. Naterer, Advanced Heat Transfer, Florida, CRC Press, 2021.10.1201/9781003206125Suche in Google Scholar

[68] A. E. Allahverdyan, D. Janzing, and G. Mahler, “Thermodynamic efficiency of information and heat flow,” J. Stat. Mech.: Theory Exp., vol. 2009, no. 09, p. P09011, 2009. https://doi.org/10.1088/1742–5468/2009/09/p09011.10.1088/1742-5468/2009/09/P09011Suche in Google Scholar

[69] S. Sieniutycz, “Chapter 8-thermodynamics and optimization of practical processes,” in Thermodynamic Approaches in Engineering Systems, S. Sieniutycz, Ed., Amsterdam, Elsevier, 2016, pp. 347–420.10.1016/B978-0-12-805462-8.00008-XSuche in Google Scholar

Received: 2022-10-24
Accepted: 2023-01-02
Published Online: 2023-02-27
Published in Print: 2023-07-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2022-0080/html?lang=de
Button zum nach oben scrollen