Startseite Effect of Copper Electrode Geometry on Electrofreezing of the Phase-Change Material CaCl2·6H2O
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Copper Electrode Geometry on Electrofreezing of the Phase-Change Material CaCl2·6H2O

  • Ahmad Swandi , Annisa Rahman , Risky Afandi Putri , Radhiah Anggraini , Daniel Kurnia , Surjamanto Wonorahardjo und Inge Magdalena Sutjahja EMAIL logo
Veröffentlicht/Copyright: 11. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The development of effective active thermal energy storage systems requires an understanding of how electrode geometry affects the electrofreezing process. This study aimed to observe the nucleation behavior of an inorganic phase-change material, CaCl2·6H2O, using a DC electric field and various copper electrode geometries. The effects of both the electrode diameter (d=0.5 and 0.7 mm) and the tip shape (flat and sharp end surfaces) were investigated. Data analysis was performed to reveal the nucleation temperature, freezing temperature, supercooling degree, supercooling time, and crystallization time period. The copper electrode with the larger diameter was found to result in a higher nucleation temperature, a smaller supercooling degree, faster nucleation, and a shorter crystallization time period. Moreover, changing from a flat tip to a sharp tip decreased the nucleation temperature and increased the supercooling degree. This study showed that the electrode geometry plays an important role in the phase-change behavior of CaCl2·6H2O.

Funding statement: This work was supported by the Desentralisasi ITB PUPT RistekDIKTI Indonesia research program under contract no. 1170j/I1.C01/PL/2019.

Acknowledgment

We would like to thank Editage (www.editage.com) for English language editing.

  1. Conflict of interest: No potential conflict of interest was reported by the authors.

References

[1] H. Mehling and L. F. Cabeza, Heat and Cold Storage with PCM: An up to Date Introduction into Basics and Applications, Springer, Berlin, 2008.10.1007/978-3-540-68557-9Suche in Google Scholar

[2] D. C. Hyun, N. S. Levinson, U. Jeong and Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks, Angew. Chem. Int.53 (2014), no. 15, 3780–3795, DOI: 10.1002/anie.201305201.Suche in Google Scholar

[3] X. Chen, Z. Tang, H. Gao, S. Chen and G. Wang, Phase change materials for electro-thermal conversion and storage: from fundamental understanding to engineering design, iScience23 (2020), no. 6, 101208. (1–25), doi: 10.1016/j.isci.2020.101208.Suche in Google Scholar

[4] M. M. Farid and A. Sherrif, Phase change materials for energy storage and thermal comfort in buildings, in: M. R. Hall (ed.), Materials for Energy Efficiency and Thermal Comfort in Buildings, CRC Press, Boca Raton (2010), 384–398.10.1533/9781845699277.2.384Suche in Google Scholar

[5] J. Kośny, PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures, Springer, Cham, 2015.10.1007/978-3-319-14286-9Suche in Google Scholar

[6] A. M. Khudhair and M. M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Convers. Manag.45 (2004), no. 2, 263–275, DOI: 10.1016/S0196-8904(03)00131-6.Suche in Google Scholar

[7] B. P. Jelle and S. E. Kalnæs, Phase change materials for application in energy-efficient buildings, in: F. Pacheco-Torgal, C. -G. Granqvist, B. P. Jelle, G. P. Vanoli, N. Bianco and J. Kurnitski (eds.), Cost-Effective Energy-Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies, Woodhead Publishing, Duxford (2017). 57–118.10.1016/B978-0-08-101128-7.00003-4Suche in Google Scholar

[8] G. A. Lane, Low temperature heat storage with phase change materials, Int. J. Ambient Energy1 (1980), no. 3, 155–168, DOI: 10.1080/01430750.1980.9675731.Suche in Google Scholar

[9] A. Madad, T. Mouhib and A. Mouhsen, Phase change materials for building applications: a thorough review and new perspectives, Buildings8 (2018), no. 5, 63, DOI: 10.3390/buildings8050063.Suche in Google Scholar

[10] E. Osterman, V. V. Tyagi, V. Butala, N. A. Rahim and U. Stritih, Review of PCM based cooling technologies for buildings, Energy Build.49 (2012), 37–49, DOI: 10.1016/j.enbuild.2012.03.022.Suche in Google Scholar

[11] S. Riffat, B. Mempouo and W. Fang, Phase change material developments: a review, Int. J. Ambient Energy36 (2015), no. 3, 102–115, DOI: 10.1080/01430750.2013.823106.Suche in Google Scholar

[12] V. V. Tyagi and D. Buddhi, PCM thermal storage in buildings: a state of art, Renew. Sustain. Energy Rev.11 (2007), no. 6, 1146–1166, DOI: 10.1016/j.rser.2005.10.002.Suche in Google Scholar

[13] V. V. Tyagi, D. Buddhi, R. Kothari and S. K. Tyagi, Phase change material (PCM) based thermal management system for cool energy storage application in building: an experimental study, Energy Build.51 (2012), 248–254, DOI: 10.1016/j.enbuild.2012.05.023.Suche in Google Scholar

[14] V. V. Tyagi, A. K. Pandey, D. Buddhi and R. Kothari, Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings, Energy Build.117 (2016), 44–52, DOI: 10.1016/j.enbuild.2016.01.042.Suche in Google Scholar

[15] Y. Zhang, G. Zhou, K. Lin, Q. Zhang and H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook, Build. Environ.42 (2007), no. 6, 2197–2209, DOI: 10.1016/j.buildenv.2006.07.023.Suche in Google Scholar

[16] N. R. Jankowski and F. P. McCluskey, A review of phase change materials for vehicle component thermal buffering, Appl. Energy113 (2104), 1525–1561. doi:10.1016/j.apenergy.2013.08.026.Suche in Google Scholar

[17] H. G. Lorsch, K. W. Kauffman and J. C. Denton, Thermal energy storage for solar heating and off-peak air conditioning, Energy Convers.15 (1975), no. 1–2. 1–8, doi:10.1016/0013-7480(75)90002-9.Suche in Google Scholar

[18] V. Métivaud L. Ventolà, T. Calvet, M. A. Cuevas-Diarte and D. Mondieig, Temperature Controlled Packings for the Transportation of Sensitive Products. Paper presented at the 8th Workshop IEA ECES Annex 17: Advanced Thermal Energy Storage Techniques – Feasibility Studies and Demonstration Projects, Kizkalesi, Turkey, April 18–20. 2005.10.1080/10667857.2005.11753139Suche in Google Scholar

[19] F. Setterwall, PCM in Insulated Containers Gives Passive Temperature Control Door-to-Door. Paper presented at the 8th Workshop IEA ECES Annex 17: Advanced Thermal Energy Storage Techniques – Feasibility Studies and Demonstration Projects, Kizkalesi, Turkey, April 18–20. 2005.Suche in Google Scholar

[20] H. Ling, C. Chen, S. Wei, Y. Guan, C. Ma, G. Xie, et al., Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time, Appl. Energy140 (2015), 329–337, DOI: 10.1016/j.apenergy.2014.11.078.Suche in Google Scholar

[21] A. P. Cosentino, Thermal management of telecommunications batteries using phase change materials (PCM) JacketTM, in: INTELEC. Twenty-Second International Telecommunications Energy Conference (Cat. No. 00CH37131) (2000), 237–244. doi:10.1109/INTLEC.2000.884256.Suche in Google Scholar

[22] J. Schröder and K. Gawron, Latent heat storage, Int. J. Energy Res.5 (1981), no. 2, 103–109, DOI: 10.1002/er.4440050202.Suche in Google Scholar

[23] N. Xie, Z. Huang, Z. Luo, X. Gao, Y. Fang and Z. Zhang, Inorganic salt hydrate for thermal energy storage, Appl. Sci.7 (2017), no. 12, 1317, DOI: 10.3390/app7121317.Suche in Google Scholar

[24] G. A. Lane and D. Ph, Solar Heat Storage : Latent Heat Materials Volume II, first ed., CRC Press, 2018.Suche in Google Scholar

[25] A. Hasan, S. J. McCormack, M. J. Huang and B. Norton, Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method, Energy Convers. Manag.81 (2014), 322–329, DOI: 10.1016/j.enconman.2014.02.042.Suche in Google Scholar

[26] M. Kenisarin and K. Mahkamov, Salt hydrates as latent heat storage materials: thermophysical properties and costs, Sol. Energy Mater. Sol. Cells145 (2016), 255–286, DOI: 10.1016/j.solmat.2015.10.029.Suche in Google Scholar

[27] I. M. Sutjahja, A. Silalahi, D. Kurnia and S. Wonorahardjo, Thermophysical parameters and enthalpy-temperature curve of phase change material with supercooling from T-history data, UPB Sci. Bull., Ser. B, Chem. Mater. Sci.80 (2018), no. 2, 57–70.Suche in Google Scholar

[28] I. M. Sutjahja, A. O. Silalahi, S. Wonorahardjo and D. Kurnia, Thermal conductivity of phase-change material CaCl2·6H2O with ZnO nanoparticle dopant based on temperature-history method, Revista Romana de Materiale / Rom. J. Mater.49 (2019), no. 2, 185–192.Suche in Google Scholar

[29] A. Yusuf, R.  A. Putri, A. Rahman, Y. Anggraini, D.l Kurnia, S. Wonorahardjo, et al., Time control of the latent heat release of fatty acid organic PCM using a DC electric field, J. Energy Storage33 (2021) 102045, DOI: 10.1016/j.est.2020.102045.Suche in Google Scholar

[30] M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts, Springer, New York, 2011.10.1007/978-1-4419-7344-3Suche in Google Scholar

[31] B. Sandnes and J. Rekstad, Supercooling salt hydrates: stored enthalpy as a function of temperature, Sol. Energy80 (2006), no. 5, 616–625, DOI: 10.1016/j.solener.2004.11.014.Suche in Google Scholar

[32] N. Beaupere, U. Soupremanien and L. Zalewski, Nucleation triggering methods in supercooled phase change materials (PCM), a review, Thermochim. Acta670 (2018), 184–201, DOI: 10.1016/j.tca.2018.10.009.Suche in Google Scholar

[33] G. A. Lane, Phase change materials for energy storage nucleation to prevent supercooling, Sol. Energy Mater. Sol. Cells27 (1992), no. 2, 135–160, DOI: 10.1016/0927-0248(92)90116-7.Suche in Google Scholar

[34] M. H. Zahir, S. A. Mohamed, R. Saidur and F. A. Al-Sulaiman, Supercooling of phase-change materials and the techniques used to mitigate the phenomenon, Appl. Energy240 (2019), 793–817, DOI: 10.1016/j.apenergy.2019.02.045.Suche in Google Scholar

[35] M. W. Woo and A. S. Mujumdar, Effects of electric and magnetic field on freezing and possible relevance in freeze drying, Dry. Technol.28 (2010), 433–443, DOI: 10.1080/07373930903202077.Suche in Google Scholar

[36] S. W. Young, Mechanical stimulus to crystallization in supercooled liquids, J. Am. Chem. Soc.33 (1911), no. 2, 148–162, DOI: 10.1021/ja02215a003.Suche in Google Scholar

[37] L. Dufour, Ueber das Gefrieren des Wassers und über die Bildung des Hagels, Ann. Phys.190 (1861), no. 12, 530–554, DOI: 10.1002/andp.18621901203.Suche in Google Scholar

[38] M. Taleb, C. Didierjean, C. Jelsch, J. P. Mangeot, B. Capelle and A. Aubry, Crystallization of proteins under an external electric field, J. Cryst. Growth200 (1999), 575–582.10.1016/S0022-0248(98)01409-2Suche in Google Scholar

[39] V. D. Aleksandrov, A. A. Barannikov and N. V. Dobritsa, Effect of magnetic field on the supercooling of water drops, Inorg. Mater.36 (2000), no. 9, 895–898, DOI: 10.1007/BF02758700.Suche in Google Scholar

[40] P. V. Acharya and V. Bahadur, Fundamental interfacial mechanisms underlying electrofreezing, Adv. Colloid Interface Sci.251 (2018), 26–43, DOI: 10.1016/j.cis.2017.12.003.Suche in Google Scholar PubMed

[41] M. Dalvi-Isfahan, N. Hamdami, E. Xanthakis and A. Le-Bail, Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields, J. Food Eng.195 (2017), 222–234, DOI: 10.1016/j.jfoodeng.2016.10.001.Suche in Google Scholar

[42] P. K. Jha, E. Xanthakis, V. Jury and A. Le-Bail, An overview on magnetic field and electric field interactions with ice crystallisation; application in the case of frozen food, Crystals7 (2017), no. 10, 299(1–22), DOI: 10.3390/cryst7100299.Suche in Google Scholar

[43] J. H. Mok, W. Choi, S. H. Park, S. H. Lee, S. Jun and Field Emerging Pulsed Electric, (PEF) and static magnetic field (SMF) combination technology for food freezing, Int. J. Refrig.50 (2015), 137–145, DOI: 10.1016/j.ijrefrig.2014.10.025.Suche in Google Scholar

[44] I. M. Svishchev and P. G. Kusalik, Electrofreezing of liquid water: a microscopic perspective, J. Am. Chem. Soc.118 (1996), no. 3, 649–654, DOI: 10.1021/ja951624l.Suche in Google Scholar

[45] S. Wei, X. Xiaobin, Z. Hong and X. Chuanxiang, Effects of dipole polarization of water molecules on ice formation under an electrostatic field, Cryobiology56 (2008), no. 1, 93–99, DOI: 10.1016/j.cryobiol.2007.10.173.Suche in Google Scholar PubMed

[46] A. Shahriari, P. V. Acharya, K. Carpenter and V. Bahadur, Metal-foam-based ultrafast electronucleation of hydrates at low voltages, Langmuir33 (2017), no. 23, 5652–5656, DOI: 10.1021/acs.langmuir.7b00913.Suche in Google Scholar

[47] K. Carpenter and V. Bahadur, Electronucleation for rapid and controlled formation of hydrates, J. Phys. Chem. Lett.7 (2016), no. 13, 2465–2469, DOI: 10.1021/acs.jpclett.6b01166.Suche in Google Scholar

[48] I. M. Sutjahja, A. Rahman, R. A. Putri, A. Swandi, R. Anggraini, S. Wonorahardjo, et al., Electrofreezing of the phase-change material CaCl2·6H2O and its impact on supercooling and the nucleation time, Chem. Ind.73 (2019), no. 6, 363–374.10.2298/HEMIND190803034SSuche in Google Scholar

[49] T. Shichiri and T. Nagata, Effect of electric currents on the nucleation of ice crystals in the melt, J. Cryst. Growth54 (1981), no. 2, 207–210, DOI: 10.1016/0022-0248(81)90461-9.Suche in Google Scholar

[50] T. Shichiri and Y. Araki, Nucleation mechanism of ice crystals under electrical effect, J. Cryst. Growth78 (1986), no. 3, 502–508, DOI: 10.1016/0022-0248(86)90152-1.Suche in Google Scholar

[51] T. Hozumi, A. Saito, S. Okawa and K. Watanabe, Effects of electrode materials on freezing of supercooled water in electric freeze control, Int. J. Refrig.26 (2003), no. 5, 537–542, DOI: 10.1016/S0140-7007(03)00008-2.Suche in Google Scholar

[52] H. Kumano, T. Hirata, K. Mitsuishi and K. Ueno, Experimental study on effect of electric field on hydrate nucleation in supercooled tetra-n-butyl ammonium bromide aqueous solution, Int. J. Refrig.35 (2012), no. 5, 1266–1274, DOI: 10.1016/j.ijrefrig.2012.03.005.Suche in Google Scholar

[53] H. Kumano, H. Goto, Y. Toyama and M. Kawakita, Study on TBAB hydrate nucleating activity of electrode products due to DC voltage application, Int. J. Refrig.93 (2018), 10–17, DOI: 10.1016/j.ijrefrig.2018.06.001.Suche in Google Scholar

[54] T. Hozumi, A. Saito, S. Okawa and Y. Eshita, Effects of shapes of electrodes on freezing of supercooled water in electric freeze control, Int. J. Refrig.28 (2005), no. 3, 389–395, DOI: 10.1016/j.ijrefrig.2004.08.009.Suche in Google Scholar

[55] X. M. Wu and R. L. Webb, Investigation of the possibility of frost release from a cold surface, Exp. Therm. Fluid Sci.24 (2001), no. 3–4, 151–156, DOI: 10.1016/S0894-1777(01)00045-0.Suche in Google Scholar

[56] R. O. Piucco, C. J. L. Hermes, C. Melo and J. R Barbosa Jr., A study of frost nucleation on flat surfaces, Exp. Therm. Fluid Sci.32 (2008), no. 8, 1710–1715, DOI: 10.1016/j.expthermflusci.2008.06.004.Suche in Google Scholar

[57] B. Na and R. L. Webb, A fundamental understanding of factors affecting frost nucleation, Int. J. Heat Mass Transf.46 (2003), no. 20, 3797–3808, DOI: 10.1016/S0017-9310(03)00194-7.Suche in Google Scholar

[58] H. Hong, S. K. Kim and Y. -S. Kim, Accuracy improvement of T-history method for measuring heat of fusion of various materials, Int. J. Refrig.27 (2004), no. 4, 360–366, DOI: 10.1016/j.ijrefrig.2003.12.006.Suche in Google Scholar

[59] G. M. Maggioni and M. Mazzotti, Modelling the stochastic behaviour of primary nucleation, Faraday Discuss.179 (2015), 359–382, DOI: 10.1039/C4FD00255E.Suche in Google Scholar

[60] G. M. Maggioni and M. Mazzotti, Stochasticity in primary nucleation: measuring and modeling detection times, Cryst. Growth Des.17 (2017), no. 7, 3625–3635, DOI: 10.1021/acs.cgd.6b01781.Suche in Google Scholar

[61] G. Vali, Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces, Atmos. Chem. Phys.14 (2014), 5271–5294, DOI: 10.5194/acp-14-5271-2014.Suche in Google Scholar

[62] I. M. Sutjahja, A. O. Silalahi, N. Sukmawati, D. Kurnia and S. Wonorahardjo, Variation of thermophysical parameters of PCM CaCl2·6H2O with dopant from T-history data analysis, Mater. Res. Express5 (2018), no. 3, 034007, DOI: 10.1088/2053-1591/aab6f0.Suche in Google Scholar

[63] D. Kashchiev, On the influence of the electric field, Philos. Mag.25 (1972), no. 2, 459–470, DOI: 10.1080/14786437208226816.Suche in Google Scholar

[64] D. Kashchiev, Nucleation in external electric field, J. Cryst. Growth13/14 (1972), 128–130.10.1016/0022-0248(72)90074-7Suche in Google Scholar

[65] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinemann publisher, 2000. ISBN: 0 7506 4682 9.Suche in Google Scholar

[66] J. O. Isard, Calculation of the influence of an electric field on the free energy of formation of a nucleus, Philos. Mag.35 (1977), 817–819.10.1080/14786437708236010Suche in Google Scholar

[67] L. F. Alexander and N. Radacsi, Application of electric fields for controlling crystallization, CrystEngComm21 (2019), 5014–5031, DOI: 10.1039/c9ce00755e.Suche in Google Scholar

[68] Piyush Kumar Jha, Mathieu Sadot, S. Ajay Vino, Vanessa Jury, Sébastien Curet-Ploquin, Olivier Rouaud, et al., A review on effect of DC voltage on crystallization process in food systems, Innov. Food Sci. Emerg. Technol.42 (2017), 204–219.10.1016/j.ifset.2017.06.002Suche in Google Scholar

[69] Kang Taiyoung, Youngsang You and Soojin Jun, Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications, Food Sci. Biotechnol.29 (2020), no. 3, 303–321, DOI: 10.1007/s10068-020-00750-6.Suche in Google Scholar PubMed PubMed Central

[70] H. S. Fricker, Why does charge concentrate on points?, Phys. Educ.24 (1989), 157–161.10.1088/0031-9120/24/3/309Suche in Google Scholar

[71] G. Altamimi, H. A. Illias, N. Mokhtar, H. Mokhlis and A. H. A. Bakar, Corona discharges under various types of electrodes, in: 2014 IEEE International Conference Power & Energy (PECON).10.1109/PECON.2014.7062403Suche in Google Scholar

[72] M. A. B. Sidik, H. Ahmad, Z. Salam, Z. Buntat, O. L. Mun, N. Bashir, et al., Study on the effectiveness of lightning rod tips in capturing lightning leaders, Electr. Eng.95 (2012), no. 4, 367–381, DOI: 10.1007/s00202-012-0270-6.Suche in Google Scholar

[73] A. F. Rusydi, Correlation between conductivity and total dissolved solid in various type of water: a review, IOP Conf. Ser. Earth Environ. Sci.118 (2018), no. 1, 012019(1–6), DOI: 10.1088/1755-1315/118/1/012019.Suche in Google Scholar

[74] A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino and D. F. Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule4 (2020), no. 3, 555–579, DOI: 10.1016/j.joule.2020.01.005.Suche in Google Scholar

[75] M. Orlowska, A. LeBail and M. Havet, Electrofreezing, Ohmic Heating in Food Processing, CRC Press, 2014. 423–440.Suche in Google Scholar

Received: 2020-06-10
Revised: 2020-10-21
Accepted: 2020-11-20
Published Online: 2020-12-11
Published in Print: 2021-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2020-0066/html
Button zum nach oben scrollen