Startseite A Rigorous Scattering Approach to Quasifree Fermionic Systems out of Equilibrium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Rigorous Scattering Approach to Quasifree Fermionic Systems out of Equilibrium

  • Walter H. Aschbacher EMAIL logo
Veröffentlicht/Copyright: 27. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Within the rigorous axiomatic framework for the description of quantum mechanical systems with a large number of degrees of freedom, we construct the so-called nonequilibrium steady state for the quasifree fermionic system corresponding to the isotropic XY chain in which a finite sample, subject to a local gauge breaking anisotropy perturbation, is coupled to two thermal reservoirs at different temperatures. Using time dependent and stationary scattering theory, we rigorously prove, from first principles, that the nonequilibrium system under consideration is thermodynamically nontrivial, i. e., that its entropy production rate is strictly positive.

References

[1] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1/2, Springer, 1987/1997.10.1007/978-3-662-02520-8Suche in Google Scholar

[2] D. Ruelle, Entropy production in quantum spin systems, Commun. Math. Phys. 224 (2001), 3.10.1007/s002200100534Suche in Google Scholar

[3] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16 (1961), 407.10.1007/978-3-662-06390-3_35Suche in Google Scholar

[4] J. W. Culvahouse, D. P. Schinke and L. G. Pfortmiller, Spin-spin interaction constants from the hyperfine structure of coupled ions, Phys. Rev. 177 (1969), 454.10.1103/PhysRev.177.454Suche in Google Scholar

[5] H. -J. Mikeska and A. K. Kolezhuk, One-dimensional magnetism, in: U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop (Eds.) Quantum Magnetism, Lect. Notes Phys. 645, Springer (2004), 1.10.1007/BFb0119591Suche in Google Scholar

[6] W. H. Aschbacher and C.-A. Pillet, Non-equilibrium steady states of the XY chain, J. Stat. Phys. 112 (2003), 1153.10.1023/A:1024619726273Suche in Google Scholar

[7] W. H. Aschbacher, Broken translation invariance in quasifree fermionic correlations out of equilibrium, J. Funct. Anal. 260 (2011), 3429.10.1016/j.jfa.2011.02.021Suche in Google Scholar

[8] H. Araki, On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6 (1971), 385.10.2977/prims/1195193913Suche in Google Scholar

[9] H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, Contemp. Math. 62 (1987), 23.10.1090/conm/062/878376Suche in Google Scholar

[10] H. Araki, On the XY-model on two-sided infinite chain, Publ. RIMS Kyoto Univ. 20 (1984), 277.10.2977/prims/1195181608Suche in Google Scholar

[11] H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory, Birkhäuser, 1983.10.1007/978-3-0348-5440-5Suche in Google Scholar

[12] D. R. Yafaev, Mathematical Scattering Theory: General Theory, AMS, 1998.Suche in Google Scholar

[13] L. Hume and D. W. Robinson, Return to equilibrium in the XY model, J. Stat. Phys. 44 (1986), 829.10.1007/BF01011909Suche in Google Scholar

[14] W. H. Aschbacher, On a quantum phase transition in a steady state out of equilibrium, J. Phys. A, Math. Theor. 49 (2016), 415201.10.1088/1751-8113/49/41/415201Suche in Google Scholar

Received: 2018-10-15
Revised: 2019-02-15
Accepted: 2019-03-05
Published Online: 2019-03-27
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0071/html
Button zum nach oben scrollen