The Energy-Momentum Tensor in Relativistic Kinetic Theory: The Role of the Center of Mass Velocity in the Transport Equations for Multicomponent Mixtures
Abstract
Relativistic kinetic theory is applied to the study of the balance equations for relativistic multicomponent mixtures, comparing the approaches corresponding to Eckart’s and Landau–Lifshitz’s frames. It is shown that the concept of particle velocity relative to the center of mass of the fluid is essential to establish the structure of the energy-momentum tensor in both cases. Different operational definitions of the center of mass velocity lead either to the inclusion of heat in the energy-momentum tensor (particle/Eckart frame) or to strictly relativistic contributions to the diffusion fluxes (energy/Landau–Lifshitz frame). The results here obtained are discussed emphasizing the physical features regarding each approach.
References
[1] C. Eckart, The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid, Phys. Rev. 58 (1940), 919–924.10.1103/PhysRev.58.919Search in Google Scholar
[2] L. Landau and E. Lifshitz, Fluid Mechanics, vol. 6, Elsevier Science, 2013.Search in Google Scholar
[3] W. Israel, Relativistic kinetic theory of a simple gas, J. Math. Phys. 4 (1963), 1163–1181.10.1063/1.1704047Search in Google Scholar
[4] H. Struchtrup, Projected moments in relativistic kinetic theory, Phys. A, Stat. Mech. Appl. 253 (1998), 555–595.10.1016/S0378-4371(98)00037-5Search in Google Scholar
[5] C. Cercignani and G. M. Kremer, in: The Relativistic Boltzmann Equation: Theory and Applications, Springer (2002), 31–63.10.1007/978-3-0348-8165-4_2Search in Google Scholar
[6] A. L. García-Perciante, A. Sandoval-Villalbazo and L. García-Colín, On the microscopic nature of dissipative effects in special relativistic kinetic theory, J. Non-Equilib. Thermodyn. 37 (2012), 43–61.10.1515/jnetdy.2011.025Search in Google Scholar
[7] W. A. Hiscock and L. Lindblom, Generic instabilities in first order dissipative relativistic fluid theories, Phys. Rev. D 31 (1985), 725–733.10.1103/PhysRevD.31.725Search in Google Scholar
[8] P. Ván, Generic stability of dissipative non-relativistic and relativistic fluids, J. Stat. Mech. Theory Exp. 2009 (2009), P0254.10.1088/1742-5468/2009/02/P02054Search in Google Scholar
[9] S. Pu, T. Koide and D. H. Rischke, Does stability of relativistic dissipative fluid dynamics imply causality?, Phys. Rev. D 81 (2010), 114039.10.1103/PhysRevD.81.114039Search in Google Scholar
[10] M. Smerlak, On the inertia of heat, Eur. Phys. J. Plus 127 (2012), 72.10.1140/epjp/i2012-12072-4Search in Google Scholar
[11] A. Sandoval-Villalbazo, A. L. García-Perciante and L. S. García-Colín, Relativistic transport theory for simple fluids at first order in the gradients: A stable picture, Physica A 388 (2009), 3765.10.1016/j.physa.2009.06.001Search in Google Scholar
[12] I. Müller, Toward relativistic thermodynamics, Arch. Ration. Mech. Anal. 34 (1969), 259–282.10.1007/BF00248569Search in Google Scholar
[13] W. Israel, Nonstationary irreversible thermodynamics: A casual relativistic theory, Ann. Phys. 100 (1976), 310–331.10.1016/0003-4916(76)90064-6Search in Google Scholar
[14] M. Stewart, On transient relativistic thermodynamics and kinetic theory, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 357 (1977), 59–75.10.1098/rspa.1977.0155Search in Google Scholar
[15] K. Tsumura and T. Kunihiro, Uniqueness of Landau–Lifshitz energy frame in relativistic dissipative hydrodynamics, Phys. Rev. E 87 (2013), 053008.10.1103/PhysRevE.87.053008Search in Google Scholar
[16] A. L. García-Perciante and A. Sandoval-Villalbazo, Remarks on relativistic kinetic theory to first order in the gradients, J. Non-Newton. Fluid Mech. 165 (2010), 1024–1028.10.1016/j.jnnfm.2010.03.007Search in Google Scholar
[17] S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Mathematical Library, Cambridge University Press, 1970.Search in Google Scholar
[18] Y. Kikuchi, K. Tsumura and T. Kunihiro, Derivation of second-order relativistic hydrodynamics for reactive multicomponent systems, Phys. Rev. C 92 (2015), 064909.10.1103/PhysRevC.92.064909Search in Google Scholar
[19] E. Kolb and M. Turner, The Early Universe, Frontiers in Physics, Addison-Wesley, 1990.Search in Google Scholar
[20] A. L. García-Perciante and A. R. Méndez, Heat conduction in relativistic neutral gases revisited, Gen. Relativ. Gravit. 42 (2011), 2257–2275.10.1007/s10714-011-1180-zSearch in Google Scholar
[21] P. Ván, M. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilib. Thermodyn. 42 (2017), 133–151.10.1515/jnet-2016-0058Search in Google Scholar
[22] P. Ván, Galilean relativistic fluid mechanics, Contin. Mech. Thermodyn. 29 (2017), 585–610.10.1007/s00161-016-0545-7Search in Google Scholar
[23] C. Marle, Sur l’établissement des équations de l’hydrodynamique des fluides relativistes dissipatifs. i. l’equation de Boltzmann relativiste, Ann. IHP, Phys. Théor. 10 (1969), 67–126.Search in Google Scholar
[24] J. Anderson and H. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica 74 (1974), 466–488.10.1016/0031-8914(74)90355-3Search in Google Scholar
[25] D. Brun-Battistini, A. Sandoval-Villalbazo and A. L. García-Perciante, Entropy production in simple special relativistic fluids, J. Non-Equilib. Thermodyn. 39 (2014), 27–33.10.1515/jnetdy-2013-0031Search in Google Scholar
[26] V. Moratto, A. L. García-Perciante and L. S. García-Colín, Validity of the Onsager relations in relativistic binary mixtures, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 84 (2011), 021132.10.1103/PhysRevE.84.021132Search in Google Scholar PubMed
[27] D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, 4th ed., Springer-Verlag, Berlin Heidelberg, 2001.10.1007/978-3-642-56565-6Search in Google Scholar
[28] A. R. Sagaceta-Mejía and Sandoval-Villalbazo, On the statistical foundations of magnetohydrodynamics, Am. Inst. Phys. Conf. Ser. 1786 (2016), 040007.10.1063/1.4967545Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Numerical Exploration of MHD Radiative Micropolar Liquid Flow Driven by Stretching Sheet with Primary Slip: A Comparative Study
- Microscale Thermal Energy Transfer Between Thin Films with Vacuum Gap at Interface
- Attainability of Maximum Work and the Reversible Efficiency of Minimally Nonlinear Irreversible Heat Engines
- Modeling Phase Behavior of Semi-Clathrate Hydrates of CO2, CH4, and N2 in Aqueous Solution of Tetra-n-butyl Ammonium Fluoride
- The Energy-Momentum Tensor in Relativistic Kinetic Theory: The Role of the Center of Mass Velocity in the Transport Equations for Multicomponent Mixtures
- Finite Time Thermodynamics: Realizability Domain of Heat to Work Converters
- Cellulose Acetate Mixed Matrix Membranes Coated with PEG/TiO2 for Removal of Pb(II) Ions from Aqueous Solutions: Combined Experimental and Quantum Chemical Modeling Investigation
- Attributes of Activation Energy and Exponential Based Heat Source in Flow of Carreau Fluid with Cross-Diffusion Effects
Articles in the same Issue
- Frontmatter
- Research Articles
- Numerical Exploration of MHD Radiative Micropolar Liquid Flow Driven by Stretching Sheet with Primary Slip: A Comparative Study
- Microscale Thermal Energy Transfer Between Thin Films with Vacuum Gap at Interface
- Attainability of Maximum Work and the Reversible Efficiency of Minimally Nonlinear Irreversible Heat Engines
- Modeling Phase Behavior of Semi-Clathrate Hydrates of CO2, CH4, and N2 in Aqueous Solution of Tetra-n-butyl Ammonium Fluoride
- The Energy-Momentum Tensor in Relativistic Kinetic Theory: The Role of the Center of Mass Velocity in the Transport Equations for Multicomponent Mixtures
- Finite Time Thermodynamics: Realizability Domain of Heat to Work Converters
- Cellulose Acetate Mixed Matrix Membranes Coated with PEG/TiO2 for Removal of Pb(II) Ions from Aqueous Solutions: Combined Experimental and Quantum Chemical Modeling Investigation
- Attributes of Activation Energy and Exponential Based Heat Source in Flow of Carreau Fluid with Cross-Diffusion Effects