Startseite Numerical Exploration of MHD Radiative Micropolar Liquid Flow Driven by Stretching Sheet with Primary Slip: A Comparative Study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Exploration of MHD Radiative Micropolar Liquid Flow Driven by Stretching Sheet with Primary Slip: A Comparative Study

  • Anantha Kumar K. , Sugunamma V. EMAIL logo und Sandeep N. EMAIL logo
Veröffentlicht/Copyright: 14. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The knowledge of thermal transport of magnetohydrodynamic (MHD) flows across a stretching sheet plays a crucial role for transportation, fiber coating, heat exchangers, etc. Due to this fact, we scrutinize the heat transfer features of MHD micropolar fluid flow via a stretching surface in the neighborhood of the stagnation point with Joule heating, by taking advantage of the classical Fourier law. The flow equations are transformed into dimensionless form with the help of suitable similarity transformations. The Runge–Kutta-based shooting method is utilized to solve the converted non-linear coupled equations. Impacts of various physical parameters on the flow fields are represented via graphs. The heat transfer rate, couple stress coefficient and friction factor are presented in a separate table. Results anticipate that fluid temperature is an increasing function of Eckert number, radiation and magnetic parameters, whereas an opposite outcome is noticed for the Prandtl number. It is interesting to notice that the maximum velocity is attained in the absence of slip but maximum temperature is detected in the presence of slip.

References

[1] A. Acrivos, M. J. Shah and E. E. Petersen, Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surfaces, AIChE J. 6 (1960), no. 2, 312–317.10.1002/aic.690060227Suche in Google Scholar

[2] P. Y. Huang and J. Feng, Wall effects on the flow of viscoelastic fluids around a circular cylinder, J. Non-Newton. Fluid Mech. 60 (1995), no. 2–3, 179–198.10.1016/0377-0257(95)01394-2Suche in Google Scholar

[3] C. H. Chen, Effects of magnetic field and suction/injection on convection heat transfer of non-newtonian Power-law fluids past a power-law stretched sheet with surface heat flux, Int. J. Therm. Sci. 47 (2008), no. 7, 954–961.10.1016/j.ijthermalsci.2007.06.003Suche in Google Scholar

[4] S. Nadeem, R. U. Haq and C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Sci. Iran. 19 (2012), 1550–1553.10.1016/j.scient.2012.10.021Suche in Google Scholar

[5] A. C. Eringen, Theory of anisotropic micropolar fluids, Int. J. Eng. Sci. 18 (1980), no. 1, 5–17.10.1016/0020-7225(80)90003-8Suche in Google Scholar

[6] R. C. Chaudhary and A. K. Jha, Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime, Appl. Math. Mech. Engl. Ed. 29 (2008), no. 9, 1179–1194.10.1007/s10483-008-0907-xSuche in Google Scholar

[7] M. Naveed, Z. Abbas and M. Sajid, MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation, J. Appl. Fluid Mech. 9 (2016), no. 1, 131–138.10.18869/acadpub.jafm.68.224.23967Suche in Google Scholar

[8] J. V. R. Reddy, V. Sugunamma and N. Sandeep, Enhanced heat transfer in the flow of dissipative non-Newtonian Casson fluid flow over a convectively heated upper surface of a paraboloid of revolution, J. Mol. Liq. 229 (2017), 380–388.10.1016/j.molliq.2016.12.100Suche in Google Scholar

[9] K. Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten garden Kreiszylinder, Dinglers Polytech. J. 326 (1911), 321–324.Suche in Google Scholar

[10] T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation point flow towards a stretching sheet, Acta Mech. 152 (2001), 191–196.10.1007/BF01176953Suche in Google Scholar

[11] M. Mustafa, T. Hayat, I. Pop, S. Asghar and S. Obaidat, Stagnation point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transf. 54 (2011), no. 25–26, 5588–5594.10.1016/j.ijheatmasstransfer.2011.07.021Suche in Google Scholar

[12] K. Das, Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical plate, Comput. Math. Appl. 63 (2012), 255–267.10.1016/j.camwa.2011.11.018Suche in Google Scholar

[13] B. Ramadevi, V. Sugunamma, K. Anantha Kumar and J. V. Ramana Reddy, MHD flow of Carreau fluid over a variable thickness melting surface subject to Cattaneo-Christov heat flux, Multi. Model. Mater. Struct. (2018) DOI: 10.1108/MMMS-12-2017-0169.Suche in Google Scholar

[14] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, Multi. Model. Mater. Struct. 14 (2018), no. 5, 999–1016.10.1108/MMMS-12-2017-0151Suche in Google Scholar

[15] N. Abbas, S. Saleem, S. Nadeem, A. A. Alderremy and A. U. Khan, On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip, Results Phys. 9 (2018), 1224–1232.10.1016/j.rinp.2018.04.017Suche in Google Scholar

[16] S. Nadeem, Z. Ahmad and S. Saleem, The effect of variable viscosities on micropolar flow of two nanofluids, Z. Naturforsch. 71 (2016), no. 12, 1121–1129.10.1515/zna-2015-0491Suche in Google Scholar

[17] S. Nadeem, A. U. Khan and S. Saleem, A comparative analysis on different nanofluid models for the oscillatory stagnation point flow, Eur. Phys. J. Plus 131 (2016), 261.10.1140/epjp/i2016-16261-9Suche in Google Scholar

[18] T. Hayat and M. Qasim, Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis, Int. J. Heat Mass Transf. 53 (2010), 4780–4788.10.1016/j.ijheatmasstransfer.2010.06.014Suche in Google Scholar

[19] T. Hayat, A. Shafiq and A. Alsaedi, Effect of Joule heating and thermal radiation in flow of third grad fluid over a radiative surface, PLoS ONE 9 (2014), e83153.10.1371/journal.pone.0083153Suche in Google Scholar PubMed PubMed Central

[20] T. Hayat, S. Ali, M. Awais and A. Alsaedi, Joule heating effects in MHD flow of Burger’s Fluid, Heat Transf. Res. 47 (2016), no. 12, 1083–1092.10.1615/HeatTransRes.2016008093Suche in Google Scholar

[21] C. Sulochana, S. P. Samrat and N. Sandeep, Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with Joule heating, Int. J. Mech. Sci. (2017), DOI: 10.1016/j.ijmecsci.2017.05.006.Suche in Google Scholar

[22] M. E. M. Khedr, A. J. Chamkha and M. Bayomi, MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption, Nonlinear Anal. Model. Control 14 (2009), no. 1, 27–40.10.15388/NA.2009.14.1.14528Suche in Google Scholar

[23] N. S. Akbar, A. Ebaid and Z. H. Khan, Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet, J. Magn. Magn. Mater. 382 (2015), 355–358.10.1016/j.jmmm.2015.01.088Suche in Google Scholar

[24] A. Mahmood, B. Chen and A. Ghaffari, Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinear stretching/shrinking sheet: Dual solutions by using Chebyshev Spectral Newtonian iterative scheme, J. Magn. Magn. Mater. 416 (2016), 329–334.10.1016/j.jmmm.2016.05.001Suche in Google Scholar

[25] N. Sandeep and S. Saleem, MHD flow and heat transfer of a dusty nanofluid over a stretching surface in a porous medium, Jordan J. Civil Eng. 11 (2017), 149–164.Suche in Google Scholar

[26] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. 57 (2018), 435–443.10.1016/j.aej.2016.11.013Suche in Google Scholar

[27] R. Bhargava, L. Kumar and H. S. Takhar, Finite element analysis of mixed convection micropolar flow driven by a porous stretching sheet, Int. J. Eng. Sci. 41 (2003), 2161–2178.10.1016/S0020-7225(03)00209-XSuche in Google Scholar

[28] M. A. A. Hamad, I. Pop and A. I. M. Ismail, Magnetic field effect on free convection of nanofluid past a vertical semi-infinite plate, Nonlinear Anal., Real World Appl. 12 (2011), 1338–1346.10.1016/j.nonrwa.2010.09.014Suche in Google Scholar

[29] N. A. Shah, I. L. Animasaun, R. O. Ibtaheem, H. A. Babatunde, N. Sandeep and I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, J. Mol. Liq. 249 (2018), 980–990.10.1016/j.molliq.2017.11.042Suche in Google Scholar

[30] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink, Int. J. Fluid Mech. Res. 46 (2019), no. 2.10.1615/InterJFluidMechRes.2018025940Suche in Google Scholar

[31] K. Anantha Kumar, V. Sugunamma, N. Sandeep and J. V. R. Reddy, Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects, Multi. Model. Mater. Struct. (2018), DOI: 10.1108/MMMS-02-2018-0023.Suche in Google Scholar

[32] M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee and S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term, Int. J. Heat Mass Transf. 126 (2018), 1252–1264.10.1016/j.ijheatmasstransfer.2018.05.116Suche in Google Scholar

[33] S. Nadeem and S. Saleem, Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame, J. Taiwan Inst. Chem. Eng. 44 (2013), 596–604.10.1016/j.jtice.2013.01.007Suche in Google Scholar

[34] S. M. Upadhya, C. S. K. Raju, Mahesha and S. Saleem, Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux, Results Phys. 9 (2018), 779–786.10.1016/j.rinp.2018.03.036Suche in Google Scholar

[35] D. Pal and H. Mondal, Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1197–1209.10.1016/j.cnsns.2009.05.051Suche in Google Scholar

[36] A. Ishak, Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect, Meccanica 45 (2010), 367–373.10.1007/s11012-009-9257-4Suche in Google Scholar

[37] K. Anantha Kumar, J. V. R. Reddy, N. Sandeep and V. Sugunamma, Influence of thermal radiation on stagnation flow towards a stretching sheet with induced magnetic field, Adv. Phys. Theories Appl. 53 (2016), 23–28.Suche in Google Scholar

[38] C. Sulochana, S. P. Samrat and N. Sandeep, Thermal radiation effect on MHD nanofluid flow over a stretching sheet, Int. J. Eng. Res. Afr. 23 (2016), 89–102.10.4028/www.scientific.net/JERA.23.89Suche in Google Scholar

[39] Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation, Comput. Methods Appl. Mech. Eng. 338 (2018), 618–633.10.1016/j.cma.2018.04.023Suche in Google Scholar

[40] S. Saleem, S. Nadeem, M. M. Rashidi and C. S. K. Raju, An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source, Microsyst. Technol. (2018), 1–7.10.1007/s00542-018-3996-xSuche in Google Scholar

[41] S. Saleem, S. Nadeem and M. Awais, Time dependent second order viscoelastic fluid flow on a rotating cone with Heat generation and chemical reaction, J. Aerosp. Eng. 29 (2016), no. 4, 04016009, DOI: 10.1061/(ASCE)AS.1943-5525.0000599.Suche in Google Scholar

[42] C. S. K. Raju, S. Saleem, S. U. Mamatha and I. Hussain, Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model, Int. J. Therm. Sci. 132 (2018), 309–315.10.1016/j.ijthermalsci.2018.06.016Suche in Google Scholar

[43] M. S. Abel and M. M. Nandeppanavar, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2120–2131.10.1016/j.cnsns.2008.06.004Suche in Google Scholar

[44] L. Zheng, L. Wang and X. Zhang, Analytic solutions of unsteady boundary layer flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 731–740.10.1016/j.cnsns.2010.05.022Suche in Google Scholar

[45] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink, Heat Transf. Res. (2018), DOI: 10.1615/HeatTransRes.2018025939.Suche in Google Scholar

[46] K. Anantha Kumar, V. Sugunamma and N. Sandeep, Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface, J. Non-Equilib. Thermodyn. 43 (2018), no. 4, 327–345.10.1515/jnet-2018-0022Suche in Google Scholar

[47] C. L. M. Navier, Sur les lois du mouvement des fluides, Mém. Acad. R. Sci. Inst. Fr. 6 (1827), 389–440.Suche in Google Scholar

[48] H. I. Andersson, Slip flow past a stretching surface, Acta Mech. 158 (2002), 121–125.10.1007/BF01463174Suche in Google Scholar

[49] J. V. R. Reddy, V. Sugunamma, N. Sandeep and K. A. Kumar, Influence of non-uniform heat source/sink on MHD nanofluid flow past a slendering stretching sheet with slip effects, Glob. J. Pure Appl. Math. 12 (2016), 247–254.Suche in Google Scholar

[50] M. W. A. Khan, M. Waqas, M. I. Khan, A. Alsaedi and T. Hayat, MHD stagnation point flow accounting variable thickness and slip effects, Colloid Polym. Sci. 295 (2017), 1201–1209.10.1007/s00396-017-4111-zSuche in Google Scholar

Received: 2018-10-08
Revised: 2018-11-13
Accepted: 2018-11-19
Published Online: 2018-12-14
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0069/html
Button zum nach oben scrollen