Startseite Numerical Stability with Help from Entropy: Solving a Set of 13 Moment Equations for Shock Tube Problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Stability with Help from Entropy: Solving a Set of 13 Moment Equations for Shock Tube Problem

  • Carl Philipp Zinner EMAIL logo und Hans Christian Öttinger
Veröffentlicht/Copyright: 11. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The shock structures of a 13 moment generalized hydrodynamics system of rarefied gases are simulated. These are first order hyperbolic equations derived from the Boltzmann equation. The investigated moment system stands out due to having an entropy evolution. In addition, a particular interest arises from the fact that the equations not only contain nonconservative products, but also provide the key to solving this mathematical and numerical issue by means of a simple substitution utilizing the physical entropy evolution. The apparent success of this method warrants investigation and provides a new perspective and starting point for finding general approaches to nonconservative products and irreversible processes. Furthermore, the system shows physically accurate results for low Mach numbers and is able to reveal the nonequilibrium entropy profile across a shock wave.

Acknowledgment

We thank Henning Struchtrup and Manuel Torrilhon for many helpful discussions. We are particularly grateful to Henning Struchtrup for revealing an error in [41].

References

[1] R. Abgrall and S. Karni, A comment on the computation of non-conservative products, J. Comput. Phys. 229 (2010), no. 8, 2759–2763.10.1016/j.jcp.2009.12.015Suche in Google Scholar

[2] S. Ansumali, I. V. Karlin and H. C. Öttinger, Minimal entropic kinetic models for hydrodynamics, Europhys. Lett. 63 (2003), no. 6, 798–804.10.1209/epl/i2003-00496-6Suche in Google Scholar

[3] J. D. Au, M. Torrilhon and W. Weiss, The shock tube study in extended thermodynamics, Phys. Fluids 13 (2001), 2423.10.1063/1.1381018Suche in Google Scholar

[4] C. Berthon and F. Coquel, Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form, in: Int. Ser. Numer. Math., Springer (1999), 47–54.10.1007/978-3-0348-8720-5_6Suche in Google Scholar

[5] C. Berthon, F. Coquel and P. G. LeFloch, Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, Proc. R. Soc. Edinb. A 142 (2012), no. 01, 1–37.10.1017/S0308210510001009Suche in Google Scholar

[6] M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz and C. Parés, Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes, J. Comput. Phys. 227 (2008), no. 17, 8107–8129.10.1016/j.jcp.2008.05.012Suche in Google Scholar

[7] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1970.Suche in Google Scholar

[8] S. Chigullapalli, A. Venkattraman, A. A. Alexeenko and M. S. Ivanov, Non-equilibrium flow modeling using high-order schemes for the Boltzmann model equations, in: Proceedings of the 40th Thermophysics Conference, Seattle, Washington, Paper AIAA 3929 (2008), 2008.10.2514/6.2008-3929Suche in Google Scholar

[9] F. Coquel and C. Marmignon, Numerical methods for weakly ionized gas, Astrophys. Space Sci. 260 (1998), nos. 1–2, 15–27.10.1023/A:1001870802972Suche in Google Scholar

[10] G. Dal Maso, P. G. LeFloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), no. 6, 483–548.Suche in Google Scholar

[11] A. Gorban and I. V. Karlin, Hilbert’s 6th problem: Exact and approximate hydrodynamic manifolds for kinetic equations, Bull. Am. Math. Soc. 51 (2014), no. 2, 187–246.10.1090/S0273-0979-2013-01439-3Suche in Google Scholar

[12] H. Grad, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math. 2 (1949), no. 4, 331–407.10.1002/cpa.3160020403Suche in Google Scholar

[13] H. Grad, The profile of a steady plane shock wave, Commun. Pure Appl. Math. 5 (1952), 257–300.10.1002/cpa.3160050304Suche in Google Scholar

[14] H. Grad, Principles of the kinetic theory of gases, in: S. Flügge (ed.), Thermodynamics of Gases, Encyclopedia of Physics XII, Springer, Berlin (1958), 205–294.10.1007/978-3-642-45892-7_3Suche in Google Scholar

[15] A. Harten, P. D. Lax, C. D. Levermore and W. J. Morokoff, Convex entropies and hyperbolicity for general Euler equations, SIAM J. Numer. Anal. 35 (1998), no. 6, 2117–2127.10.1137/S0036142997316700Suche in Google Scholar

[16] I. V. Karlin, S. Ansumali, C. E. Frouzakis and S. S. Chikatamarla, Elements of the lattice Boltzmann method i: Linear advection equation, Commun. Comput. Phys. 1 (2006), no. 4, 616–655.Suche in Google Scholar

[17] I. V. Karlin, S. S. Chikatamarla and S. Ansumali, Elements of the lattice Boltzmann method ii: Kinetics and hydrodynamics in one dimension, Commun. Comput. Phys. 2 (2007), no. 2, 196–238.Suche in Google Scholar

[18] P. D. Lax, Shock waves and entropy, contributions to nonlinear functional analysis, 603–634, 1971.10.1016/B978-0-12-775850-3.50018-2Suche in Google Scholar

[19] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, 1973.10.1137/1.9781611970562Suche in Google Scholar

[20] P. G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Commun. Partial Differ. Equ. 13 (1988), no. 6, 669–727.10.1080/03605308808820557Suche in Google Scholar

[21] P. G. LeFloch and M. Mohammadian, Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models, J. Comput. Phys. 227 (2008), no. 8, 4162–4189.10.1016/j.jcp.2007.12.026Suche in Google Scholar

[22] R. J. LeVeque, Numerical Methods for Conservation Laws, 1992.10.1007/978-3-0348-8629-1Suche in Google Scholar

[23] S. F. Liotta, V. Romano and G. Russo, Central schemes for balance laws of relaxation type, SIAM J. Numer. Anal. 38 (2000), no. 4, 1337–1356.10.1137/S0036142999363061Suche in Google Scholar

[24] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, volume 37, Springer Science & Business Media, 2013.Suche in Google Scholar

[25] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990), no. 2, 408–463.10.1016/0021-9991(90)90260-8Suche in Google Scholar

[26] H. C. Öttinger, Beyond Equilibrium Thermodynamics, John Wiley & Sons, 2005.10.1002/0471727903Suche in Google Scholar

[27] H. C. Öttinger, Öttinger replies, Phys. Rev. Lett. 105 (2010), no. 12, 128902.10.1103/PhysRevLett.105.128902Suche in Google Scholar

[28] H. C. Öttinger, Thermodynamically admissible 13 moment equations from the Boltzmann equation, Phys. Rev. Lett. 104 (2010), no. 12, 120601.10.1103/PhysRevLett.104.120601Suche in Google Scholar

[29] G. C. Pham-Van-Diep, D. A. Erwin and E. P. Muntz, Testing continuum descriptions of low-Mach-number Shock structures, J. Fluid Mech. 232 (1991), 403–413.10.1017/S0022112091003749Suche in Google Scholar

[30] P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. Part i: Solution of the Riemann problem, Math. Models Methods Appl. Sci. 5 (1995), no. 03, 297–333.10.1142/S021820259500019XSuche in Google Scholar

[31] G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978), no. 1, 1–31.10.1016/0021-9991(78)90023-2Suche in Google Scholar

[32] H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, 2005.10.1007/3-540-32386-4Suche in Google Scholar

[33] H. Struchtrup and T. Thatcher, Bulk equations and Knudsen layers for the regularized 13 moment equations, Contin. Mech. Thermodyn. 19 (2007), no. 3, 177–189.10.1007/s00161-007-0050-0Suche in Google Scholar

[34] H. Struchtrup and M. Torrilhon, Regularization of Grad’s 13 moment equations: Derivation and linear analysis, Phys. Fluids 15 (2003), no. 9, 2668–2680.10.1063/1.1597472Suche in Google Scholar

[35] H. Struchtrup and M. Torrilhon, Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models, J. Fluid Mech. 513 (2004), 171–198.10.1017/S0022112004009917Suche in Google Scholar

[36] H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. Rev. Lett. 99 (2007), no. 1, 014502.10.1103/PhysRevLett.99.014502Suche in Google Scholar

[37] H. Struchtrup and M. Torrilhon, Comment on thermodynamically admissible 13 moment equations from the Boltzmann equation, Phys. Rev. Lett. 105 (2010), no. 12, 128901.10.1103/PhysRevLett.105.128901Suche in Google Scholar PubMed

[38] P. Taheri, M. Torrilhon and H. Struchtrup, Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations, Phys. Fluids 21 (2009), no. 1, 017102.10.1063/1.3064123Suche in Google Scholar

[39] M. Torrilhon, Two-dimensional bulk microflow simulations based on regularized grad’s 13-moment equations, Multiscale Model. Simul. 5 (2006), no. 3, 695–728.10.1137/050635444Suche in Google Scholar

[40] M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-iv-distributions, Commun. Comput. Phys. 7 (2010), no. 4, 639.10.4208/cicp.2009.09.049Suche in Google Scholar

[41] M. Torrilhon, H-theorem for nonlinear regularized 13-moment equations in kinetic gas theory, Kinet. Relat. Models 5 (2012), no. 1, 185–201.10.3934/krm.2012.5.185Suche in Google Scholar

[42] M. Torrilhon and H. Struchtrup, Boundary conditions for regularized 13-moment-equations for micro-channel-flows, J. Comput. Phys. 227 (1982–2011), no. 3, 2008.10.1016/j.jcp.2007.10.006Suche in Google Scholar

[43] W. Weiss, Continuous shock structure in extended thermodynamics, Phys. Rev. E 52 (Dec 1995), no. 6, R5760–R5763.10.1103/PhysRevE.52.R5760Suche in Google Scholar PubMed

[44] C. P. Zinner, Numerics and Boundary Conditions for 13 Moment Equations with Help from Entropy. PhD thesis, Eidgenössische Technische Hochschule Zürich, 2017.Suche in Google Scholar

Received: 2018-07-17
Revised: 2018-08-31
Accepted: 2018-09-10
Published Online: 2018-10-11
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0038/html
Button zum nach oben scrollen