Abstract
In this paper, the micromorphic approach, previously developed in the mechanical context is applied to heat transfer and shown to deliver new generalized heat equations as well as the nonlocal effects. The latter are compared to existing formulations: the classical Fourier heat conduction, the hyperbolic type with relaxation time, the gradient of temperature or entropy theories, the double temperature model, the micro-temperature model or micro-entropy models. A new pair of thermodynamically-consistent micromorphic heat equations are derived from appropriate Helmholtz-free energy potentials depending on an additional micromorphic temperature and its first gradient. The additional micromorphic temperature associated with the classical local temperature is introduced as an independent degree of freedom, based on the generalized principle of virtual power. This leads to a new thermal balance equation taking into account the nonlocal thermal effects and involving an internal length scale which represents the characteristic size of the system. Several existing extended generalized heat equations could be retrieved from constrained micromorphic heat equations with suitable selections of the Helmholtz-free energy and heat flux expressions. As an example the propagation of plane thermal waves is investigated according to the various generalized heat equations. Possible applications to fast surface processes, nanostructured media and nanosystems are also discussed.
Funding statement: The financial support from China Scholarship Council and ANR through the Program Micromorfing with contract ANR-14-CE07-0035-01 is fully acknowledged.
References
[1] J. Fourier, Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils, 1822.Suche in Google Scholar
[2] J. Fourier, The Analytical Theory of Heat. Translated, with notes, by Alexander Freeman. University Press, Cambridge, 1878.Suche in Google Scholar
[3] C. Cattaneo, Sulla conduzione del calore, in: A. Pignedoli, (ed.) Some Aspects of Diffusion Theory, Vol. 42, Springer-Verlag, Berlin, (1948).Suche in Google Scholar
[4] C. Cattaneo, Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee, C. R. Hebd. Seances Acad. Sci. 247 (1958), no. 4, 431–433.Suche in Google Scholar
[5] P. Vernotte, Les paradoxes de la théorie continue de léquation de la chaleur, C. R. Hebd. Seances Acad. Sci. 246 (1958), no. 22, 3154–3155.Suche in Google Scholar
[6] B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals, Arch. Rational Mech. Anal. 80 (1982), no. 2, 135–158.10.1007/BF00250739Suche in Google Scholar
[7] B. D. Coleman, M. Fabrizio and D. R. Owen, Thermodynamics and the constitutive relations for second sound in crystals, in: G. Grioli, (ed.) Thermodynamics and Constitutive Equations, Vol. 228, Springer-Verlag, Berlin, 1985, 20–43.10.1007/BFb0017953Suche in Google Scholar
[8] D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys. 51 (1988), no. 8, 1105–1179.10.1088/0034-4885/51/8/002Suche in Google Scholar
[9] I. Müller and T. Ruggeri, Extended Thermodynamics, Vol. 37. Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1993.10.1007/978-1-4684-0447-0Suche in Google Scholar
[10] C. Bai and A. S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics, J. Heat Transfer117 (1995), no. 2, 256–263.10.1115/1.2822514Suche in Google Scholar
[11] A. Barletta and E. Zanchini, Hyperbolic heat conduction and local equilibrium: A second law analysis, Int. J. Heat. Mass Transf. 40 (1997), no. 5, 1007–1016.10.1016/0017-9310(96)00211-6Suche in Google Scholar
[12] E. Zanchini, Hyperbolic-heat-conduction theories and nondecreasing entropy, Phys. Rev. B60 (1999), no. 2, 991–997.10.1103/PhysRevB.60.991Suche in Google Scholar
[13] R. J. Swenson, Heat conduction - finite or infinite propagation, J. Non-Equilib. Thermodyn. 3 (1978), no. 1, 39–48.10.1515/jnet.1978.3.1.39Suche in Google Scholar
[14] V. Peshkov, Second sound in helium II, J. Phys. USSR8 (1944), 381–386.Suche in Google Scholar
[15] V. Peshkov, Determination of the velocity of propagation of the second sound in helium II, J. Phys. USSR10 (1946), 389–398.10.1016/B978-0-08-015816-7.50016-XSuche in Google Scholar
[16] H. E. Jackson and C. T. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF, Phys. Rev. B3 (1971), no. 4, 1428–1439.10.1103/PhysRevB.3.1428Suche in Google Scholar
[17] V. Narayanamurti and R. C. Dynes, Observation of second sound in bismuth, Phys. Rev. Lett. 28 (1972), no. 22, 1461–1465.10.1103/PhysRevLett.28.1461Suche in Google Scholar
[18] T. Da Yu, Shock wave formation around a moving heat source in a solid with finite speed of heat propagation, Int. J. Heat. Mass Transf. 32 (1989), no. 10, 1979–1987.10.1016/0017-9310(89)90166-XSuche in Google Scholar
[19] J. Wang and J.-S. Wang, Carbon nanotube thermal transport: Ballistic to diffusive, Appl. Phys. Lett. 88 (2006), no. 11, 111909.10.1063/1.2185727Suche in Google Scholar
[20] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, et al. Nanoscale thermal transport, J. Appl. Phys. 93 (2003), no. 2, 793–818.10.1063/1.1524305Suche in Google Scholar
[21] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, et al. Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev. 1 (2014), no. 1, 011305.10.1063/1.4832615Suche in Google Scholar
[22] D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd ed., John Wiley & Sons, Chichester, 2014.10.1002/9781118818275Suche in Google Scholar
[23] D. Jou and A. Cimmelli Vito, Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: An overview, Commun. Appl. Ind. Math. 7 (2016), no. 2, 196–226.10.1515/caim-2016-0014Suche in Google Scholar
[24] B. C. Larson, J. Z. Tischler and D. M. Mills, Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation, J. Mater. Res. 1 (1986), no. 1, 144–154.10.1557/JMR.1986.0144Suche in Google Scholar
[25] A. Sellitto, V. A. Cimmelli and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, vol. 6. Springer International Publishing, Switzerland, 2016.10.1007/978-3-319-27206-1Suche in Google Scholar
[26] J. Kaiser, T. Feng, J. Maassen, X. Wang, X. Ruan and M. Lundstrom, Thermal transport at the nanoscale: A Fourier’s law vs. phonon Boltzmann equation study, J. Appl. Phys. 121 (2017), no. 4, 044302.10.1063/1.4974872Suche in Google Scholar
[27] F. X. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Appl. Phys. Lett. 90 (2007), no. 8, 083109.10.1063/1.2645110Suche in Google Scholar
[28] Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595 (2015), 1–44.10.1016/j.physrep.2015.07.003Suche in Google Scholar
[29] C. Körner and H. W. Bergmann, The physical defects of the hyperbolic heat conduction equation, Appl. Phys. A67 (1998), no. 4, 397–401.10.1007/s003390050792Suche in Google Scholar
[30] I. Müeller, Zur Ausbreitungsgeschwindigkeit Von Störungen in Kontinuierlichen Medien, Technische Hochschule, Aachen, 1966.Suche in Google Scholar
[31] I. Muller, Zum Paradoxon der Warmeleitungstheorie, Z. Phys. 198 (1967), 329–344.10.1007/BF01326412Suche in Google Scholar
[32] D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, Springer Netherlands, Dordrecht, 2010.10.1007/978-90-481-3074-0Suche in Google Scholar
[33] İ. Temizer and P. Wriggers, A micromechanically motivated higher-order continuum formulation of linear thermal conduction, ZAMM J. Appl. Math. Mech. 90 (2010), no. 10–11, 768–782.10.1002/zamm.201000009Suche in Google Scholar
[34] R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev. 148 (1966), no. 2, 766–778.10.1103/PhysRev.148.766Suche in Google Scholar
[35] S. Both, B. Czél, T. Fülöp, G. Gróf, Á. Gyenis, R. Kovács, et al. Deviation from the Fourier law in room-temperature heat pulse experiments, J. Non-Equilib. Thermodyn. 41 (2016), no. 1, 41–48.10.1515/jnet-2015-0035Suche in Google Scholar
[36] P. Ván and T. Fülöp, Universality in heat conduction theory: Weakly nonlocal thermodynamics, Ann. Phys. 524 (2012), no. 8, 470–478.10.1002/andp.201200042Suche in Google Scholar
[37] G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamics, J. Non-Equilib. Thermodyn. 39 (2014), no. 1, 35–59.10.1515/jnetdy-2013-0029Suche in Google Scholar
[38] S. L. Sobolev, Two-temperature discrete model for nonlocal heat conduction, J. Phys. III France3 (1993), no. 12, 2261–2269.10.1051/jp3:1993273Suche in Google Scholar
[39] S. L. Sobolev, Two-temperature Stefan problem, Phys. Lett. 197 (1995), no. 3, 243–246.10.1016/0375-9601(94)00939-MSuche in Google Scholar
[40] L. S. Sergei, Local non-equilibrium transport models, Physics-Uspekhi40 (1997), no. 10, 1043.10.1070/PU1997v040n10ABEH000292Suche in Google Scholar
[41] S. L. Sobolev, Nonlocal diffusion models: Application to rapid solidification of binary mixtures, Int. J. Heat. Mass Transf. 71 (2014), 295–302.10.1016/j.ijheatmasstransfer.2013.12.048Suche in Google Scholar
[42] S. L. Sobolev, Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses, Int. J. Heat. Mass Transf. 94 (2016), 138–144.10.1016/j.ijheatmasstransfer.2015.11.075Suche in Google Scholar
[43] D. Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, J. Heat Transfer117 (1995), no. 1, 8–16.10.1115/1.2822329Suche in Google Scholar
[44] G. Chen, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett. 86 (2001), no. 11, 2297–2300.10.1103/PhysRevLett.86.2297Suche in Google Scholar
[45] A. V. Luikov, V. A. Bubnov and I. A. Soloviev, On wave solutions of the heat-conduction equation, Int. J. Heat. Mass Transf. 19 (1976), no. 3, 245–248.10.1016/0017-9310(76)90027-2Suche in Google Scholar
[46] V. A. Bubnov, Wave concepts in the theory of heat, Int. J. Heat. Mass Transf. 19 (1976), no. 2, 175–184.10.1016/0017-9310(76)90110-1Suche in Google Scholar
[47] P. Ireman and Q.-S. Nguyen, Using the gradients of temperature and internal parameters in continuum thermodynamics, C. R. MeC. 332 (2004), no. 4, 249–255.10.1016/j.crme.2004.01.012Suche in Google Scholar
[48] G. A. Maugin, Internal variables and dissipative structures, J. Non-Equilib. Thermodyn. 15 (1990), no. 2, 173–192.Suche in Google Scholar
[49] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 217–249.10.1515/jnet.1994.19.3.217Suche in Google Scholar
[50] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part II. Applications, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 250–289.10.1515/jnet.1994.19.3.250Suche in Google Scholar
[51] S. Forest, J.-M. Cardona and R. Sievert, Thermoelasticity of second-grade media, in: Maugin G. A., Drouot R., Sidoroff F. (eds.), Continuum Thermomechanics, Springer Netherlands, Dordrecht, (2000), 163–176.10.1007/0-306-46946-4_12Suche in Google Scholar
[52] S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. MeC. 336 (2008), no. 4, 347–353.10.1016/j.crme.2008.01.007Suche in Google Scholar
[53] Q.-S. Nguyen, Gradient thermodynamics and heat equations, C. R. MeC. 338 (2010), no. 6, 321–326.10.1016/j.crme.2010.07.010Suche in Google Scholar
[54] E. C. Aifantis, Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun. 7 (1980), no. 4, 219–226.10.1016/0093-6413(80)90042-7Suche in Google Scholar
[55] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3, 265–296.10.1007/BF01202949Suche in Google Scholar
[56] S. Forest and E. C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct. 47 (2010), no. 25–26, 3367–3376.10.1016/j.ijsolstr.2010.07.009Suche in Google Scholar
[57] I. Müller, Thermodynamics of mixtures and phase field theory, Int. J. Solids Struct. 38 (2001), no. 6–7, 1105–1113.10.1016/S0020-7683(00)00076-7Suche in Google Scholar
[58] C. Wozniak, Thermoelasticity of non-simple oriented materials, Int. J. Eng. Sci. 5 (1967), no. 8, 605–612.10.1016/0020-7225(67)90059-6Suche in Google Scholar
[59] A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple micro-elastic solids—I, Int. J. Eng. Sci. 2 (1964), no. 2, 189–203.10.1016/0020-7225(64)90004-7Suche in Google Scholar
[60] E. S. Suhubl and A. C. Eringen, Nonlinear theory of micro-elastic solids—II, Int. J. Eng. Sci. 2 (1964), no. 4, 389–404.10.1016/0020-7225(64)90017-5Suche in Google Scholar
[61] R. A. Grot, Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci. 7 (1969), no. 8, 801–814.10.1016/0020-7225(69)90062-7Suche in Google Scholar
[62] D. Ieşan, On the theory of heat conduction in micromorphic continua, Int. J. Eng. Sci. 40 (2002), no. 16, 1859–1878.10.1016/S0020-7225(02)00066-6Suche in Google Scholar
[63] A. C. Eringen, Mechanics of micromorphic materials, in: Görtler H. (ed.), Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) 1964, Springer, Berlin, Heidelberg (1966), 131–138.10.1007/978-3-662-29364-5_12Suche in Google Scholar
[64] A. C. Eringen, Balance laws of micromorphic mechanics, Int. J. Eng. Sci. 8 (1970), no. 10, 819–828.10.1016/0020-7225(70)90084-4Suche in Google Scholar
[65] A. C. Eringen, Balance laws of micromorphic continua revisited, Int. J. Eng. Sci. 30 (1992), no. 6, 805–810.10.1016/0020-7225(92)90109-TSuche in Google Scholar
[66] A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Verlag, New York, 1999.10.1007/978-1-4612-0555-5Suche in Google Scholar
[67] S. L. Koh, Theory of a second-order microfluid, Rheol. Acta12 (1973), no. 3, 418–424.10.1007/BF01502994Suche in Google Scholar
[68] P. Říha, On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mech. 23 (1975), no. 1, 1–8.10.1007/BF01177664Suche in Google Scholar
[69] P. Riha, Poiseuille flow of microthermopolar fluids, Acta Tech. 22 (1977), 602–613.Suche in Google Scholar
[70] P. Verma, D. Singh and K. Singh, Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe, Acta Tech. 24 (1979), 402–412.Suche in Google Scholar
[71] P. Říha, On the microcontinuum model of heat conduction in materials with inner structure, Int. J. Eng. Sci. 14 (1976), no. 6, 529–535.10.1016/0020-7225(76)90017-3Suche in Google Scholar
[72] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. London Ser. 432 (1991), no. 1885, 171–194.10.1098/rspa.1991.0012Suche in Google Scholar
[73] A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the second law, Proc. Royal Soc. London Ser. 357 (1977), no. 1690, 253–270.10.1098/rspa.1977.0166Suche in Google Scholar
[74] A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31 (1993), no. 3, 189–208.10.1007/BF00044969Suche in Google Scholar
[75] D. Ieşan and L. Nappa, On the theory of heat for micromorphic bodies, Int. J. Eng. Sci. 43 (2005), no. 1–2, 17–32.10.1016/j.ijengsci.2004.09.003Suche in Google Scholar
[76] S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech. 135 (2009), no. 3, 117–131.10.1061/(ASCE)0733-9399(2009)135:3(117)Suche in Google Scholar
[77] K. Saanouni and M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects, Int. J. Solids Struct. 50 (2013), no. 14–15, 2289–2309.10.1016/j.ijsolstr.2013.03.027Suche in Google Scholar
[78] C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, 2004.10.1007/978-3-662-10388-3Suche in Google Scholar
[79] W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, J. Heat Transfer112 (1990), no. 3, 555–560.10.1115/1.2910422Suche in Google Scholar
[80] Q.-S. Nguyen and S. Andrieux, The non-local generalized standard approach: A consistent gradient theory, C. R. MeC. 333 (2005), no. 2, 139–145.10.1016/j.crme.2004.09.010Suche in Google Scholar
[81] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), no. 2, 258–267.10.1063/1.1744102Suche in Google Scholar
[82] M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D92 (1996), no. 3–4, 178–192.10.1016/0167-2789(95)00173-5Suche in Google Scholar
[83] W. Dreyer and H. Struchtrup, Heat pulse experiments revisited., Continuum Mech. Thermodyn. 5 (1993), no. 1, 3–50.10.1007/BF01135371Suche in Google Scholar
[84] D. Ieşan, Thermoelasticity of bodies with microstructure and microtemperatures, Int. J. Solids Struct. 44 (2007), no. 25–26, 8648–8662.10.1016/j.ijsolstr.2007.06.027Suche in Google Scholar
[85] D. Ieşan and R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl. 354 (2009), no. 1, 12–23.10.1016/j.jmaa.2008.12.017Suche in Google Scholar
[86] D. Ieşan and A. Scalia, Plane deformation of elastic bodies with microtemperatures, Mech. Res. Commun. 37 (2010), no. 7, 617–621.10.1016/j.mechrescom.2010.09.005Suche in Google Scholar
[87] P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math. 25 (1973), no. 3, 556–575.10.1137/0125053Suche in Google Scholar
[88] F. Mandl, Statistical Physics, 2nd ed., The Manchester Physics. John Wiley & Sons, Chichester, 2008.Suche in Google Scholar
[89] R. H. Swendsen, Statistical mechanics of colloids and Boltzmann’s definition of the entropy, Am. J. Phys. 74 (2006), no. 3, 187–190.10.1119/1.2174962Suche in Google Scholar
[90] J. Šesták and P. Holba, Heat inertia and temperature gradient in the treatment of DTA peaks, J. Therm. Anal. Calorim. 113 (2013), no. 3, 1633–1643.10.1007/s10973-013-3025-3Suche in Google Scholar
[91] P. Holba and J. Šesták, Heat inertia and its role in thermal analysis, J. Therm. Anal. Calorim. 121 (2015), no. 1, 303–307.10.1007/s10973-015-4486-3Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Research Articles
- Linear Irreversible Phenomenological Thermodynamics of Polarization Processes in Rigid Unmagnetic Insulators
- The Micromorphic Approach to Generalized Heat Equations
- The Rule of Temperature Coefficients for Selection of Optimal Separation Sequence for Multicomponent Mixtures in Thermal Systems
- Non-equilibrium Thermodynamical Description of Superfluid Transition in Liquid Helium
- Thermoelectric and Thermomagnetic Effects in Kaluza’s Kinetic Theory
Artikel in diesem Heft
- Frontmatter
- Original Research Articles
- Linear Irreversible Phenomenological Thermodynamics of Polarization Processes in Rigid Unmagnetic Insulators
- The Micromorphic Approach to Generalized Heat Equations
- The Rule of Temperature Coefficients for Selection of Optimal Separation Sequence for Multicomponent Mixtures in Thermal Systems
- Non-equilibrium Thermodynamical Description of Superfluid Transition in Liquid Helium
- Thermoelectric and Thermomagnetic Effects in Kaluza’s Kinetic Theory