Startseite Water Evaporation and Condensation by a Phase-Field Model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Water Evaporation and Condensation by a Phase-Field Model

  • Mauro Fabrizio , Diego Grandi und Luisa Molari EMAIL logo
Veröffentlicht/Copyright: 15. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We develop a phase-field model for the liquid–vapor phase transition. The model aims to describe in a thermodynamically consistent way the phase change phenomenon coupled with the macroscopic motion of the fluid. The phase field φ[0,1] describes the liquid fraction at any point and the overall water density is a function of the phase field and the pressure. An extra gaseous substance (e.g. air) is allowed in the system and contributes to the mechanical pressure. The phase transition is described by a Ginzburg–Landau equation. The parameter that drives the transition is the partial vapor pressure, which is the relevant quantity for condensation and evaporation phenomena. Moreover, a velocity-dependent term contributes to the phase change in the transition layers where a vapor pressure gradient exists.

References

[1] M. Frémond, Non-smooth Thermodynamics, Springer, Berlin, 2002.10.1007/978-3-662-04800-9Suche in Google Scholar

[2] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996.10.1007/978-1-4612-4048-8Suche in Google Scholar

[3] I. Singer and H. M. Singer, The phase-field technique for modeling multiphase materials, Rep. Prog. Phys. 71 (2008), 106501–106532.10.1088/0034-4885/71/10/106501Suche in Google Scholar

[4] V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model, Physica D 239 (2010), 95–102.10.1016/j.physd.2009.10.005Suche in Google Scholar

[5] M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response, Acta Mater. 60 (2012), 179–191.10.1016/j.actamat.2011.09.040Suche in Google Scholar

[6] M. Maraldi, L. Molari and D. Grandi, A unified thermodynamic framework for the modelling of diffusive and displacive phase transitions, Int. J. Eng. Sci. 50 (2012), 31–45.10.1016/j.ijengsci.2011.09.005Suche in Google Scholar

[7] A. Morro, Phase-field models for fluid mixtures, Math. Comput. Modell. 45 (2007), 1042–1052.10.1016/j.mcm.2006.08.011Suche in Google Scholar

[8] D. M. Anderson, G. B. McFadden and A. A. Wheeler, A phase-field model of solidification with convection, Phys. D 135 (2000), 175–194.10.6028/NIST.IR.6237Suche in Google Scholar

[9] M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Phys. D 214 (2006), 144–156.10.1016/j.physd.2006.01.002Suche in Google Scholar

[10] M. Fabrizio, Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model, J. Math. Phys. 49 (2008), 102902.10.1142/9789812772350_0035Suche in Google Scholar

[11] A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions, J. Non-Equilib. Thermodyn. 34 (2009), 219–247.10.1515/JNETDY.2009.012Suche in Google Scholar

[12] E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D 68 (1993), 326–343.10.1016/0167-2789(93)90128-NSuche in Google Scholar

[13] M. Fabrizio, Ginzburg-landau equations and first and second order phase transitions, Int. J. Eng. Sci. 44 (2006), 529–539.10.1016/j.ijengsci.2006.02.006Suche in Google Scholar

[14] R. Borcia and M. Bestehorn, Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface, Phys. Rev. E 67 (2003), 066307.10.1103/PhysRevE.67.066307Suche in Google Scholar PubMed

[15] R. Borcia and M. Bestehorn, Phase-field simulations for evaporation with convection in liquid-vapor systems, Eur. Phys. J. B 44 (2005), 101–108.10.1140/epjb/e2005-00104-9Suche in Google Scholar

[16] M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers, Continuum Mech. Thermodyn. 23 (2011), 509–552.10.1007/s00161-011-0193-xSuche in Google Scholar

[17] A. Logg, K. A. Mardal and G. Wells, Automated solution of differential equations by the finite element method, The FEniCS Book, Lecture Notes in Computational Science and Engineering, 84, Springer, Berlin (2012).10.1007/978-3-642-23099-8Suche in Google Scholar

Received: 2016-1-25
Revised: 2016-3-10
Accepted: 2016-3-23
Published Online: 2016-4-15
Published in Print: 2016-10-1

©2016 by De Gruyter Mouton

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0004/html
Button zum nach oben scrollen