Abstract
We develop a phase-field model for the liquid–vapor phase transition. The model aims to describe in a thermodynamically consistent way the phase change phenomenon coupled with the macroscopic motion of the fluid. The phase field
References
[1] M. Frémond, Non-smooth Thermodynamics, Springer, Berlin, 2002.10.1007/978-3-662-04800-9Suche in Google Scholar
[2] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996.10.1007/978-1-4612-4048-8Suche in Google Scholar
[3] I. Singer and H. M. Singer, The phase-field technique for modeling multiphase materials, Rep. Prog. Phys. 71 (2008), 106501–106532.10.1088/0034-4885/71/10/106501Suche in Google Scholar
[4] V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model, Physica D 239 (2010), 95–102.10.1016/j.physd.2009.10.005Suche in Google Scholar
[5] M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response, Acta Mater. 60 (2012), 179–191.10.1016/j.actamat.2011.09.040Suche in Google Scholar
[6] M. Maraldi, L. Molari and D. Grandi, A unified thermodynamic framework for the modelling of diffusive and displacive phase transitions, Int. J. Eng. Sci. 50 (2012), 31–45.10.1016/j.ijengsci.2011.09.005Suche in Google Scholar
[7] A. Morro, Phase-field models for fluid mixtures, Math. Comput. Modell. 45 (2007), 1042–1052.10.1016/j.mcm.2006.08.011Suche in Google Scholar
[8] D. M. Anderson, G. B. McFadden and A. A. Wheeler, A phase-field model of solidification with convection, Phys. D 135 (2000), 175–194.10.6028/NIST.IR.6237Suche in Google Scholar
[9] M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Phys. D 214 (2006), 144–156.10.1016/j.physd.2006.01.002Suche in Google Scholar
[10] M. Fabrizio, Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model, J. Math. Phys. 49 (2008), 102902.10.1142/9789812772350_0035Suche in Google Scholar
[11] A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions, J. Non-Equilib. Thermodyn. 34 (2009), 219–247.10.1515/JNETDY.2009.012Suche in Google Scholar
[12] E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D 68 (1993), 326–343.10.1016/0167-2789(93)90128-NSuche in Google Scholar
[13] M. Fabrizio, Ginzburg-landau equations and first and second order phase transitions, Int. J. Eng. Sci. 44 (2006), 529–539.10.1016/j.ijengsci.2006.02.006Suche in Google Scholar
[14] R. Borcia and M. Bestehorn, Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface, Phys. Rev. E 67 (2003), 066307.10.1103/PhysRevE.67.066307Suche in Google Scholar PubMed
[15] R. Borcia and M. Bestehorn, Phase-field simulations for evaporation with convection in liquid-vapor systems, Eur. Phys. J. B 44 (2005), 101–108.10.1140/epjb/e2005-00104-9Suche in Google Scholar
[16] M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers, Continuum Mech. Thermodyn. 23 (2011), 509–552.10.1007/s00161-011-0193-xSuche in Google Scholar
[17] A. Logg, K. A. Mardal and G. Wells, Automated solution of differential equations by the finite element method, The FEniCS Book, Lecture Notes in Computational Science and Engineering, 84, Springer, Berlin (2012).10.1007/978-3-642-23099-8Suche in Google Scholar
©2016 by De Gruyter Mouton
Artikel in diesem Heft
- Frontmatter
- Research Articles
- A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
- Thermal Convection Induced by an Infinitesimally Thin and Unstably Stratified Layer
- Water Evaporation and Condensation by a Phase-Field Model
- Optimal Concentration Configuration of Consecutive Chemical Reaction A ⇔ B ⇔ C for Minimum Entropy Generation
- Multistage Pressure-Retarded Osmosis
Artikel in diesem Heft
- Frontmatter
- Research Articles
- A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
- Thermal Convection Induced by an Infinitesimally Thin and Unstably Stratified Layer
- Water Evaporation and Condensation by a Phase-Field Model
- Optimal Concentration Configuration of Consecutive Chemical Reaction A ⇔ B ⇔ C for Minimum Entropy Generation
- Multistage Pressure-Retarded Osmosis