Startseite On the Relevance of Low-Mach-Number Asymptotics in Thermodynamics of Heterogeneous, Immiscible Mixtures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Relevance of Low-Mach-Number Asymptotics in Thermodynamics of Heterogeneous, Immiscible Mixtures

  • Christos Varsakelis EMAIL logo und Miltiadis V. Papalexandris
Veröffentlicht/Copyright: 3. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A conundrum in non-equilibrium thermodynamics of heterogeneous mixtures with microstructure concerns the selection of thermodynamic currents and forces in the entropy production rate from the multitude of available options. The objective of this article is to demonstrate that the low-Mach-number approximation can narrow down this ambiguity. More specifically, by postulating that the post-constitutive equations are well behaved with respect to this perturbation analysis we assert that thermal non-equilibrium should be chosen as an independent force even if this requires the explicit manipulation of the entropy inequality. According to our analysis, alternative choices result in post-constitutive equations; the incompressible limit of which gives rise to questionable predictions.

References

[1] M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow 12 (1986), 861–889.10.1016/0301-9322(86)90033-9Suche in Google Scholar

[2] S. L. Passman, J. W. Nunziato and P. B. Bailey, Shearing motion of a fluid-saturated granular material, J. Rheol. 20 (1986), 167–192.10.1122/1.549894Suche in Google Scholar

[3] B. Svendsen and K. Hutter, On the thermodynamics of a mixture of isotropic materials with constraints, Int. J. Eng. Sci. 1 (1995), 2021–2054.10.1016/0020-7225(95)00044-XSuche in Google Scholar

[4] Y. Wang and K. Hutter, A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures, Granul. Matter 73 (1999), 163–181.10.1007/s100350050023Suche in Google Scholar

[5] Y. Wang and K. Hutter, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows, Rheol. Acta 38 (1999), 214–223.10.1007/s003970050171Suche in Google Scholar

[6] J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila and D. S. Stewart, Two-phase modelling of deflagration-to-detonation transition in granular materials: A critical examination of modelling issues, Phys. Fluids 11 (1999), 378–492.10.1063/1.869887Suche in Google Scholar

[7] D. Lhuillier, Internal variables and the non-equilibrium thermodynamics of colloidal suspensions, J. Non-Newton. Fluid Mech. 96 (2001), 19–30.10.1016/S0377-0257(00)00139-7Suche in Google Scholar

[8] S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys. 175 (2002), 326–360.10.1006/jcph.2001.6951Suche in Google Scholar

[9] M. V. Papalexandris, A two-phase model for compressible granular flows based on the theory of irreversible processes, J. Fluid Mech. 517 (2004), 103–112.10.1017/S0022112004000874Suche in Google Scholar

[10] J. M. Powers, Two-phase viscous modeling of compaction of granular materials, Phys. Fluids 16 (2004), 2975–2990.10.1063/1.1764951Suche in Google Scholar

[11] C. Fang, Y. Wang and K. Hutter, A thermo-mechanical continuum theory with internal length for cohesionless granular materials, Continuum Mech. Thermodyn. 17 (2006), 577–607.10.1007/s00161-006-0008-7Suche in Google Scholar

[12] M. V. Papalexandris and P. Antoniadis, A thermo-mechanical model for flows in superposed porous and fluid layers with interphasial heat and mass exchange, Int. J. Heat Mass Transfer 88 (2015), 42–54.10.1016/j.ijheatmasstransfer.2015.04.049Suche in Google Scholar

[13] D. G. Lebon, D. Jou and J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers, Berlin Heidelberg: Springer, 2008.10.1007/978-3-540-74252-4Suche in Google Scholar

[14] S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, New York: Dover, 1984.Suche in Google Scholar

[15] I. Peshkov, M. Grmela and E. Romenski, Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions, Continuum Mech. Thermodyn. 27 (2015), 905–940.10.1007/s00161-014-0386-1Suche in Google Scholar

[16] A. D. Drew and S. L. Passman, Theory of Multicomponent Fluids, New York: Springer, 1999.10.1007/b97678Suche in Google Scholar

[17] M. A. Goodman and S. C. Cowin, A continuum theory for granular materials, Arch. Rat. Mech. Anal. 44 (1972), 249–266.10.1007/BF00284326Suche in Google Scholar

[18] N. Kirchner, Thermodynamically consistent modelling of abrasive granular materials. I. Non-equilibrium theory, Proc. R. Soc. Lond. A 458 (2002), 2015–20176.10.1098/rspa.2002.0963Suche in Google Scholar

[19] C. Varsakelis and M. V. Papalexandris, Low-Mach-number asymptotics for two-phase flows of granular materials, J. Fluid Mech. 669 (2011), 472–497.10.1017/S0022112010005173Suche in Google Scholar

[20] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilib. Thermodyn. 19 (1994), 217–249.10.1515/jnet.1994.19.3.217Suche in Google Scholar

[21] C. Varsakelis, Gibbs free energy and integrability of continuum models for granular media at equilibrium, Continuum Mech. Thermodyn. 27 (2015), 495–498.10.1007/s00161-014-0373-6Suche in Google Scholar

[22] W. L. Elban and M. A. Chiarito, Quasi-static compaction study of coarse HMX explosive, Powder Technol. 46 (1986), 181–193.10.1016/0032-5910(86)80025-0Suche in Google Scholar

[23] J. M. Powers, D. S. Stewart and H. K. Krier, Analysis of steady compaction waves in porous materials, J. Appl. Mech. 59 (1989), 15–24.10.1115/1.3176038Suche in Google Scholar

[24] C. Josserand, P.-Y. Lagrée and D. Lhuillier, Granular pressure and the thickness of a layer jamming on a rough incline, Europhys. Lett. 73 (2006), 363.10.1209/epl/i2005-10398-1Suche in Google Scholar

[25] O. Le Metayer, J. Massoni and R. Saurel, Elaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’ècoulements diphasiques, Int. J. Therm. Sci. 43 (2004), 265–276.10.1016/j.ijthermalsci.2003.09.002Suche in Google Scholar

[26] D. W. Schwendeman, C. W. Wahle and A. K. Kapila, A study of detonation evolution and structure for a model of compressible two-phase reactive flow, Combust. Theor. Model 12 (2008), 159–204.10.1080/13647830701564538Suche in Google Scholar

[27] M. T. Cochran and J. M. Powers, Computation of compaction in compressible granular material, Mech. Res. Commun. 35 (2008), 96–103.10.1016/j.mechrescom.2007.10.003Suche in Google Scholar

[28] B. Müller, Low-Mach-number asymptotics of the Navier-Stokes equations, J. Eng. Math. 34 (1998), 97–109.10.1007/978-94-017-1564-5_6Suche in Google Scholar

[29] G. Gallavotti, Foundations of Fluid Dynamics, Berlin Heidelberg: Springer, 2002.10.1007/978-3-662-04670-8Suche in Google Scholar

[30] E. Feireisl and A. Novotný, The low Mach number limit for the full Navier–Stokes–Fourier system, Arch. Rat. Mech. Anal. 186 (2007), 77–107.10.1007/s00205-007-0066-4Suche in Google Scholar

[31] C. Varsakelis and M. V. Papalexandris, A numerical method for two-phase flows of dense granular mixtures, J. Comput. Phys. 257 (2014), 737–756.10.1016/j.jcp.2013.10.023Suche in Google Scholar

[32] C. Varsakelis, D. Monsorno and M. V. Paplexandris, Projection methods for two-velocity, two-pressure models for flows of heterogeneous mixtures, Comput. Math. Appl. 70 (2015), 1024–1045.10.1016/j.camwa.2015.06.023Suche in Google Scholar

Received: 2016-1-19
Revised: 2016-3-18
Accepted: 2016-4-5
Published Online: 2016-5-3
Published in Print: 2017-1-1

©2017 by De Gruyter Mouton

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0003/html?lang=de
Button zum nach oben scrollen