Startseite Naturwissenschaften Higher-order finite difference modeling of chaos and Turing-like patterns in space-fractional reaction–diffusion systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Higher-order finite difference modeling of chaos and Turing-like patterns in space-fractional reaction–diffusion systems

  • Khaled M. Saad ORCID logo , Kolade M. Owolabi ORCID logo EMAIL logo , Edson Pindza und Waleed M. Hamanah
Veröffentlicht/Copyright: 25. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper explores using fractional-order methods to model chaotic dynamics and spatiotemporal Turing-type patterns in complex systems. By employing fractional calculus, which captures noninteger order dynamics, the study provides insights into the mechanisms driving pattern formation and chaos in systems such as chemical reactions, ecological models, and biological processes. A mathematical framework is developed to investigate the emergence, stability, and influence of these patterns. The integer-order spatial derivative is replaced with two-sided Riemann–Liouville fractional operators, and a fourth-order finite difference scheme is introduced for approximating fractional diffusion-like problems in one and two dimensions. Stability and convergence analyses of the proposed methods are conducted. To further explore pattern formation, the study extends its analysis to a multicomponent system, solving for spatiotemporal Turing-like patterns in both one and two dimensions. The results demonstrate the generation of several novel and existing patterns. Understanding chaotic behavior and pattern formation is essential for various scientific and engineering applications. The insights gained from this study contribute to a deeper comprehension of complex systems and may aid in controlling or utilizing these patterns across disciplines such as physics, chemistry, biology, and ecology.

2010 Mathematics Subject Classification: 26A33; 34A34; 35A05; 35K57; 65L05; 65M06; 92B10

Corresponding author: Kolade M. Owolabi, Department of Mathematical Sciences, Federal University of Technology Akure, PMB 704, Akure, Ondo State, Nigeria; Department of Mathematics and Applied Mathematics, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa; and Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa, E-mail: 

Acknowledgments

The research team thanks the Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama'a program, with the project code (NU/GP/SERC/13/77-5).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Authors contributed equally.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Project code: NU/GP/SERC/13/77-1.

  7. Data availability: Not applicable.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Netherlands, Elsevier, 2006.Suche in Google Scholar

[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, John Wiley & Sons, 1993.Suche in Google Scholar

[3] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, New York, Dover Publication, 2006.Suche in Google Scholar

[4] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, New York, Springer, 2011.10.1007/978-94-007-0747-4Suche in Google Scholar

[5] I. Podlubny, Fractional Differential Equations, San Diego, Academic Press, 1999.Suche in Google Scholar

[6] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Amsterdam, Gordon and Breach, 1993.Suche in Google Scholar

[7] M. Alqhtani, K. M. Owolabi, and K. M. Saad, “Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator,” Chaos Solitons Fractals, vol. 160, p. 112267, 2022, https://doi.org/10.1016/j.chaos.2022.112267.Suche in Google Scholar

[8] N. An, G. Zhao, C. Huang, and X. Yu, “α − Robust H1-norm analysis of a finite element method for the superdiffusion equation with weak singularity solutions,” Comput. Math. Appl., vol. 118, pp. 159–170, 2022, https://doi.org/10.1016/j.camwa.2022.05.017.Suche in Google Scholar

[9] S. Djilali and C. Cattani, “Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response,” Chaos Solitons Fractals, vol. 151, p. 111258, 2021, https://doi.org/10.1016/j.chaos.2021.111258.Suche in Google Scholar

[10] G. Karipova and M. Magdziarz, “Pricing of basket options in subdiffusive fractional Black–Scholes model,” Chaos Solitons Fractals, vol. 102, pp. 245–253, 2017, https://doi.org/10.1016/j.chaos.2017.05.013.Suche in Google Scholar

[11] Kritika, R. Agarwal, and S. D. Purohit, “Mathematical model for anomalous subdiffusion using comformable operator,” Chaos Solitons Fractals, vol. 140, p. 110199, 2020, https://doi.org/10.1016/j.chaos.2020.110199.Suche in Google Scholar

[12] C. Li, Z. Zhao, and Y. Q. Chen, “Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion,” Comput. Math. Appl., vol. 62, no. 3, pp. 855–875, 2011. https://doi.org/10.1016/j.camwa.2011.02.045.Suche in Google Scholar

[13] K. M. Owolabi, B. Karaagac, and D. Baleanu, “Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach,” Soft Comput., vol. 25, pp. 11191–11208, 2021, https://doi.org/10.1007/s00500-021-05885-0.Suche in Google Scholar

[14] K. M. Owolabi, B. Karaagac, and D. Baleanu, “Pattern formation in super-diffusion predator-prey-like problems with integer and non-integer order derivatives,” Math. Methods Appl. Sci., vol. 44, no. 5, pp. 4018–4036, 2021. https://doi.org/10.1002/mma.7007.Suche in Google Scholar

[15] A. Iomin, “Quantum continuous time random walk in nonlinear Schrodinger equation with disorder,” Chaos Solitons Fractals, vol. 93, pp. 64–70, 2016, https://doi.org/10.1016/j.chaos.2016.09.026.Suche in Google Scholar

[16] D. C. B. Ziem, C. L. Gninzanlong, C. B. Tabi, and T. C. Kofane, “Dynamics and pattern formation of a diffusive predator-prey model in the subdiffusive regime in presence of toxicity,” Chaos Solitons Fractals, vol. 151, p. 111238, 2021.10.1016/j.chaos.2021.111238Suche in Google Scholar

[17] F. Diaz-Diaz and E. Estrada, “Time and space generalized diffusion equation on graph/networks,” Chaos Solitons Fractals, vol. 156, p. 111791, 2022, https://doi.org/10.1016/j.chaos.2022.111791.Suche in Google Scholar

[18] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, London, Imperial College Press, 2010.10.1142/9781848163300Suche in Google Scholar

[19] S. P. Nasholm and S. Holm, “Linking multiple relaxation, power-law attenuation, and fractional wave equations,” J. Acoust. Soc. Am., vol. 130, no. 5, pp. 3038–3045, 2011, https://doi.org/10.1121/1.3641457.Suche in Google Scholar PubMed

[20] N. Laskin, “Fractional Schrodinger equation,” Phys. Rev. E, vol. 66, no. 5, p. 056108, 2002, https://doi.org/10.1103/physreve.66.056108.Suche in Google Scholar PubMed

[21] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Appl. Numer. Math., vol. 56, no. 1, pp. 80–90, 2006. https://doi.org/10.1016/j.apnum.2005.02.008.Suche in Google Scholar

[22] N. Liu, Y. Liu, H. Li, and J. Wang, “Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term,” Comput. Math. Appl., vol. 75, no. 10, pp. 3521–3536, 2018. https://doi.org/10.1016/j.camwa.2018.02.014.Suche in Google Scholar

[23] X. Liu and X. Yang, “Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction–diffusion equation,” Comput. Math. Appl., vol. 84, no. 2, pp. 39–55, 2021, https://doi.org/10.1016/j.camwa.2020.12.004.Suche in Google Scholar

[24] E. Pindza and K. M. Owolabi, “Fourier spectral method for higher order space fractional reaction-diffusion equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 40, pp. 112–128, 2016, https://doi.org/10.1016/j.cnsns.2016.04.020.Suche in Google Scholar

[25] G. Gao, Z. Sun, and H. Zhang, “A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications,” J. Comput. Phys., vol. 259, pp. 33–50, 2014, https://doi.org/10.1016/j.jcp.2013.11.017.Suche in Google Scholar

[26] E. Sousa, “Finite difference approximations for a fractional advection diffusion problem,” J. Comput. Phys., vol. 231, pp. 1–15, 2012.Suche in Google Scholar

[27] X. Guo, Y. Li, and H. Wang, “A fourth-order scheme for space fractional diffusion equations,” J. Comput. Phys., vol. 373, pp. 410–424, 2018, https://doi.org/10.1016/j.jcp.2018.03.032.Suche in Google Scholar

[28] C. Lubich, “Discretized fractional calculus,” J. Math. Anal., vol. 17, no. 3, pp. 704–719, 1986, https://doi.org/10.1137/0517050.Suche in Google Scholar

[29] E. Cuesta, C. Lubich, and C. Palencia, “Convolution quadrature time discretization of fractional diffusion-wave equations,” Math. Comput., vol. 75, no. 254, pp. 673–696, 2006, https://doi.org/10.1090/s0025-5718-06-01788-1.Suche in Google Scholar

[30] C. Lubich, “Convolution quadrature and discretized operational calculus. I,” Numer. Math., vol. 52, no. 2, pp. 129–145, 1988, https://doi.org/10.1007/bf01398686.Suche in Google Scholar

[31] K. M. Owolabi, “Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives,” Neural Comput. Appl., vol. 34, no. 19, pp. 4093–4104, 2019, https://doi.org/10.1007/s00521-019-04350-2.Suche in Google Scholar

[32] K. M. Owolabi and D. Baleanu, “Emergent patterns in diffusive Turing-like systems with fractional-order operator,” Neural Comput. Appl., vol. 33, pp. 12703–12720, 2021, https://doi.org/10.1007/s00521-021-05917-8.Suche in Google Scholar

[33] K. M. Owolabi and E. Pindza, “Numerical simulation of chaotic maps with the new generalized Caputo-type fractional-order operator,” Results Phys., vol. 38, p. 105563, 2022, https://doi.org/10.1016/j.rinp.2022.105563.Suche in Google Scholar

[34] M. Chen and W. Deng, “Fourth order accurate scheme for the space fractional diffusion equations,” SIAM J. Numer. Anal., vol. 52, no. 3, pp. 1418–1438, 2014. https://doi.org/10.1137/130933447.Suche in Google Scholar

[35] H. W. Choi, S. K. Chung, and Y. J. Lee, “Numerical solutions for space fractional dispersion equations with nonlinear source terms,” Bull. Korean Math. Soc., vol. 47, no. 5, pp. 1225–1234, 2010. https://doi.org/10.4134/bkms.2010.47.6.1225.Suche in Google Scholar

[36] Y. Wang, Y. Yan, and Y. Hu, “Numerical methods for solving space fractional partial differential equations using Hadamard finite-part integral approach,” Commun. Appl. Math. Comput., vol. 1, no. 4, pp. 505–523, 2019, https://doi.org/10.1007/s42967-019-00036-7.Suche in Google Scholar

[37] M. Alqhtani, K. M. Owolabi, K. M. Saad, and E. Pindza, “Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology,” Chaos Solitons Fractals, vol. 161, p. 112394, 2022, https://doi.org/10.1016/j.chaos.2022.112394.Suche in Google Scholar

[38] M. Alqhtani, M. M. Khader, and K. M. Saad, “Numerical simulation for a high-dimensional chaotic Lorenz system based on Gegenbauer wavelet polynomials,” Mathematics, vol. 11, no. 3, p. 472, 2023. https://doi.org/10.3390/math11020472.Suche in Google Scholar

[39] H. M. Srivastava, K. M. Saad, and W. M. Hamanah, “Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations,” Mathematics, vol. 10, no. 12, p. 1089, 2022. https://doi.org/10.3390/math10071089.Suche in Google Scholar

[40] S. Vaidyanathan and C. Volos, Advances and Applications in Chaotic Systems, Studies in Computational Intelligence, vol. 636, Switzerland, Springer, 2016.10.1007/978-3-319-30279-9Suche in Google Scholar

[41] M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys., vol. 65, no. 3, pp. 851–1112, 1993, https://doi.org/10.1103/revmodphys.65.851.Suche in Google Scholar

[42] A. M. Turing, “The chemical basis of morphogenesis,” Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., vol. 237, pp. 37–72, 1952.10.1098/rstb.1952.0012Suche in Google Scholar

[43] B. Baeumer, M. M. Meerschaert, and J. Mortensen, “Space–time fractional derivative operators,” Proc. Am. Math. Soc., vol. 137, no. 5, pp. 1961–1972, 2009.Suche in Google Scholar

[44] V. E. Tarasov, “Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media,” Nonlinear Sci. Complex., vol. 3, pp. 1–464, 2011.10.1007/978-3-642-14003-7Suche in Google Scholar

[45] A. Zang, Y. Guo, X. L. Wang, and J. Sun, “Pattern formation in space-fractional reaction–diffusion systems,” Chaos Solitons Fractals, vol. 156, p. 111855, 2022.Suche in Google Scholar

Received: 2025-04-05
Accepted: 2025-11-02
Published Online: 2025-11-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jncds-2025-0029/pdf
Button zum nach oben scrollen