Startseite Leader-following consensus tracking control for fractional-order multi-motor systems via disturbance-observer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Leader-following consensus tracking control for fractional-order multi-motor systems via disturbance-observer

  • Hui Cao EMAIL logo , Chuang Liu , António M. Lopes ORCID logo , Panpan Gu und Youwen Zhang
Veröffentlicht/Copyright: 25. Juni 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The leader-following consensus tracking control of fractional-order (FO) multi-motor systems (FOMMSs) in the presence of exogenous disturbances is investigated. It is widely recognized that FO models are better than integer-order (IO) ones for representing systems with memory effects. Therefore, studying the consensus tracking control of FOMMSs is essential. In this paper, a consensus tracking protocol is developed using a disturbance-observer and state feedback to deal with unknown exogenous disturbances. The closed-loop system stability is analyzed via Lyapunov and graph theory. Novel sufficient conditions for the stabilization of each motor are derived in the form of linear matrix inequalities. Simulation results illustrate the validity and efficacy of the proposed consensus protocol, namely its strong synchronization ability and robustness.


Corresponding author: Hui Cao, Department of Mechanical and Electrical Information, Anhui Vocational College of Press and Publishing, Hefei, China, E-mail: 

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 61403115

Funding source: Anhui Provincial Key Research and Development Project

Award Identifier / Grant number: 202304a05020060

Funding source: Key Scientific Research Foundation of the Education Department of Province Anhui

Award Identifier / Grant number: 2023AH040085

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for theentire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Natural Science Foundation of China(61403115), Anhui Provincial Key Research and Development Project (202304a05020060) and Key Scientific Research Foundation of the Education Department of Province Anhui (2023AH040085).

  5. Data availability: Not applicable.

References

[1] M. Wang, X. Ren, and Q. Chen, “Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance,” ISA Trans., vol. 72, pp. 147–160, 2018, https://doi.org/10.1016/j.isatra.2017.09.018.Suche in Google Scholar PubMed

[2] C. Zhu, Q. Tu, C. Jiang, M. Pan, and H. Huang, “A cross coupling control strategy for dual-motor speed synchronous system based on second order global fast terminal sliding mode control,” IEEE Access, vol. 8, pp. 217967–217976, 2020, https://doi.org/10.1109/access.2020.3042256.Suche in Google Scholar

[3] Y. Wang, W. Zhang, and L. Yu, “A linear active disturbance rejection control approach to position synchronization control for networked interconnected motion system,” IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1746–1756, 2020. https://doi.org/10.1109/tcns.2020.2999305.Suche in Google Scholar

[4] X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong, “Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 229–240, 2019. https://doi.org/10.1109/tase.2018.2792327.Suche in Google Scholar

[5] V. Jerković Štil, T. Varga, T. Benšić, and M. Barukčić, “A survey of fuzzy algorithms used in multi-motor systems control,” Electronics, vol. 9, no. 11, p. 1788, 2020. https://doi.org/10.3390/electronics9111788.Suche in Google Scholar

[6] D. Yu and C. L. P. Chen, “Automatic leader–follower persistent formation generation with minimum agent-movement in various switching topologies,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1569–1581, 2020. https://doi.org/10.1109/tcyb.2018.2865803.Suche in Google Scholar

[7] F. M. Zaihidee, S. Mekhilef, and M. Mubin, “Robust speed control of PMSM using sliding mode control (SMC) – a review,” Energies, vol. 12, no. 9, p. 1669, 2019. https://doi.org/10.3390/en12091669.Suche in Google Scholar

[8] F. F. M. El-Sousy, M. Amin, and O. A. Mohammed, “Robust optimal control of high-speed permanent-magnet synchronous motor drives via self-constructing fuzzy wavelet neural network,” in 2019 IEEE Industry Applications Society Annual Meeting, 2019, pp. 1–8.10.1109/IAS.2019.8912451Suche in Google Scholar

[9] Y. Huang, J. Zhang, D. Chen, and J. Qi, “Model reference adaptive control of marine permanent magnet propulsion motor based on parameter identification,” Electronics, vol. 11, no. 7, p. 1012, 2022. https://doi.org/10.3390/electronics11071012.Suche in Google Scholar

[10] H. Basu and S. Y. Yoon, “Cooperative output regulation of networked motors under switching communication and detectability constraints,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp. 1296–1303, 2021. https://doi.org/10.1109/tcst.2020.2982363.Suche in Google Scholar

[11] A. Parivallal, R. Sakthivel, F. Alzahrani, and A. Leelamani, “Quantized guaranteed cost memory consensus for nonlinear multi-agent systems with switching topology and actuator faults,” Phys. A Stat. Mech. Appl., vol. 539, p. 122946, 2020, https://doi.org/10.1016/j.physa.2019.122946.Suche in Google Scholar

[12] X. Liu, S. Wang, M. Chi, Z. Liu, and Y. Wang, “Resilient secondary control and stability analysis for dc microgrids under mixed cyber attacks,” IEEE Trans. Ind. Electron., vol. 71, no. 2, pp. 1938–1947, 2024. https://doi.org/10.1109/tie.2023.3262893.Suche in Google Scholar

[13] M. Tan, Z. Liu, C. P. Chen, and Y. Zhang, “Neuroadaptive asymptotic consensus tracking control for a class of uncertain nonlinear multiagent systems with sensor faults,” Inf. Sci., vol. 584, pp. 685–700, 2022, https://doi.org/10.1016/j.ins.2021.10.053.Suche in Google Scholar

[14] K. Liu and Z. Ji, “Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy,” IEEE Trans. Circ. Syst. II Express Briefs, vol. 69, no. 8, pp. 3440–3444, 2022. https://doi.org/10.1109/tcsii.2022.3144280.Suche in Google Scholar

[15] K. Liu and Z. Ji, “Dynamic event-triggered consensus of multi-agent systems under directed topology,” Int. J. Robust Nonlinear Control, vol. 33, no. 8, pp. 4328–4344, 2023. https://doi.org/10.1002/rnc.6610.Suche in Google Scholar

[16] J. Wang, Y. Yan, Z. Liu, C. P. Chen, C. Zhang, and K. Chen, “Finite-time consensus control for multi-agent systems with full-state constraints and actuator failures,” Neural Networks, vol. 157, pp. 350–363, 2023, https://doi.org/10.1016/j.neunet.2022.10.028.Suche in Google Scholar PubMed

[17] R. Sakthivel, A. Parivallal, F. Kong, and Y. Ren, “Bipartite consensus for takagi-sugeno fuzzy uncertain multi-agent systems with gain fluctuations,” IEEE Trans. Signal Inf. Process. Over Netw., vol. 9, pp. 74–83, 2023, https://doi.org/10.1109/tsipn.2023.3239679.Suche in Google Scholar

[18] A. Parivallal, Y. M. Jung, and S. Yun, “Hybrid-triggered bipartite leader-following consensus for multi-agent systems with controller gain variations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 126, p. 107455, 2023, https://doi.org/10.1016/j.cnsns.2023.107455.Suche in Google Scholar

[19] C. Liu, B. Jiang, X. Wang, H. Yang, and S. Xie, “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sin., vol. 9, no. 6, pp. 1037–1048, 2022. https://doi.org/10.1109/jas.2022.105419.Suche in Google Scholar

[20] H. Du, G. Wen, D. Wu, Y. Cheng, and J. Lü, “Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems,” Automatica, vol. 113, p. 108797, 2020, https://doi.org/10.1016/j.automatica.2019.108797.Suche in Google Scholar

[21] C. Deng, D. Zhang, and G. Feng, “Resilient practical cooperative output regulation for mass with unknown switching exosystem dynamics under dos attacks,” Automatica, vol. 139, p. 110172, 2022, https://doi.org/10.1016/j.automatica.2022.110172.Suche in Google Scholar

[22] C. Zhang, H. Wu, J. He, and C. Xu, “Consensus tracking for multi-motor system via observer based variable structure approach,” J. Franklin Inst., vol. 352, no. 8, pp. 3366–3377, 2015. https://doi.org/10.1016/j.jfranklin.2015.01.035.Suche in Google Scholar

[23] S. Masroor and C. Peng, “Agent-based consensus on speed in the network-coupled dc motors,” Neural Comput. Appl., vol. 30, no. 5, pp. 1647–1656, 2018. https://doi.org/10.1007/s00521-016-2773-y.Suche in Google Scholar

[24] B. Zhang, S. Mo, H. Zhou, T. Qin, and Y. Zhong, “Finite-time consensus tracking control for speed sensorless multi-motor systems,” Appl. Sci., vol. 12, no. 11, p. 5518, 2022. https://doi.org/10.3390/app12115518.Suche in Google Scholar

[25] S. Zheng, P. Shi, Y. Xie, and S. Wang, “Fast finite-time tracking consensus with applications on multiple servo motors,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2993–3002, 2023. https://doi.org/10.1109/tie.2022.3174244.Suche in Google Scholar

[26] T. Zhang, D. Yu, K. H. Cheong, Y. Zhao, Z. Wang, and C. L. P. Chen, “Nonsingular practical fixed-time consensus tracking for multimotor system with input saturation,” IEEE Syst. J., vol. 17, no. 3, pp. 4683–4694, 2023. https://doi.org/10.1109/jsyst.2023.3262510.Suche in Google Scholar

[27] M. Shen, H. Zhang, S. K. Nguang, and C. K. Ahn, “H∞ output anti-disturbance control of stochastic Markov jump systems with multiple disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 12, pp. 7633–7643, 2021. https://doi.org/10.1109/tsmc.2020.2981112.Suche in Google Scholar

[28] M. Shen, X. Wang, J. H. Park, Y. Yi, and W.-W. Che, “Extended disturbance-observer-based data-driven control of networked nonlinear systems with event-triggered output,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 3129–3140, 2023. https://doi.org/10.1109/tsmc.2022.3222491.Suche in Google Scholar

[29] G. A. Anastassiou, Generalized Fractional Calculus: New Advancements and Applications, Cham, Switzerland, Springer Nature, 2020.10.1007/978-3-030-56962-4Suche in Google Scholar

[30] L. Chen, X. Li, R. Wu, A. M. Lopes, X. Li, and M. Zhu, “Guaranteed cost consensus for a class of fractional-order uncertain multi-agent systems with state time delay,” Int. J. Control Autom. Syst., vol. 20, no. 11, pp. 3487–3500, 2022. https://doi.org/10.1007/s12555-021-0009-0.Suche in Google Scholar

[31] H. Liu, L. Cheng, M. Tan, and Z.-G. Hou, “Exponential finite-time consensus of fractional-order multiagent systems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 4, pp. 1549–1558, 2020. https://doi.org/10.1109/tsmc.2018.2816060.Suche in Google Scholar

[32] L. Chen, X. Li, Y. Chen, R. Wu, A. M. Lopes, and S. Ge, “Leader-follower non-fragile consensus of delayed fractional-order nonlinear multi-agent systems,” Appl. Math. Comput., vol. 414, p. 126688, 2022, https://doi.org/10.1016/j.amc.2021.126688.Suche in Google Scholar

[33] H. Zhang, Z. Gao, Y. Wang, and Y. Cai, “Leader-following exponential consensus of fractional-order descriptor multiagent systems with distributed event-triggered strategy,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 6, pp. 3967–3979, 2022. https://doi.org/10.1109/tsmc.2021.3082549.Suche in Google Scholar

[34] Z. Yaghoubi, “Robust cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller,” Math. Comput. Simulat., vol. 172, pp. 15–32, 2020, https://doi.org/10.1016/j.matcom.2020.01.002.Suche in Google Scholar

[35] X. Zhang, S. Chen, and J.-X. Zhang, “Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems,” Appl. Math. Comput., vol. 434, p. 127442, 2022, https://doi.org/10.1016/j.amc.2022.127442.Suche in Google Scholar

[36] L. Chen, G. Chen, P. Li, A. M. Lopes, J. T. Machado, and S. Xu, “A variable-order fractional proportional-integral controller and its application to a permanent magnet synchronous motor,” Alex. Eng. J., vol. 59, no. 5, pp. 3247–3254, 2020. https://doi.org/10.1016/j.aej.2020.08.046.Suche in Google Scholar

[37] W. Chen, H. Sun, and X. Li, Fractional Derivative Modeling in Mechanics and Engineering, Berlin, Springer, 2022.10.1007/978-981-16-8802-7Suche in Google Scholar

[38] J. Liu, Y. Zhang, C. Sun, and Y. Yu, “Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control,” Inf. Sci., vol. 480, pp. 261–272, 2019, https://doi.org/10.1016/j.ins.2018.12.037.Suche in Google Scholar

[39] R. Yang, S. Liu, Y.-Y. Tan, Y.-J. Zhang, and W. Jiang, “Consensus analysis of fractional-order nonlinear multi-agent systems with distributed and input delays,” Neurocomputing, vol. 329, pp. 46–52, 2019, https://doi.org/10.1016/j.neucom.2018.10.045.Suche in Google Scholar

[40] C. Xu, Y. Zheng, H. Su, and H.-B. Zeng, “Containment for linear multi-agent systems with exogenous disturbances,” Neurocomputing, vol. 160, pp. 206–212, 2015, https://doi.org/10.1016/j.neucom.2015.02.008.Suche in Google Scholar

[41] C. Xu, H. Xu, H. Su, and C. Liu, “Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication,” Neurocomputing, vol. 404, pp. 26–33, 2020, https://doi.org/10.1016/j.neucom.2020.04.051.Suche in Google Scholar

[42] M. Shen, Y. Ma, J. H. Park, and Q. Wang, “Fuzzy tracking control for Markov jump systems with mismatched faults by iterative proportional–integral observers,” IEEE Trans. Fuzzy Syst., vol. 30, no. 2, pp. 542–554, 2022. https://doi.org/10.1109/tfuzz.2020.3041589.Suche in Google Scholar

[43] J. Zhang, M. Lyu, T. Shen, L. Liu, and Y. Bo, “Sliding mode control for a class of nonlinear multi-agent system with time delay and uncertainties,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 865–875, 2018. https://doi.org/10.1109/tie.2017.2701777.Suche in Google Scholar

[44] J. Huang, G. Yang, Z. Fang, Q. Duan, C. Ju, and X. Gao, “Non-fragile sliding mode control for one-sided lipschitz chaotic systems,” ISA Trans., vol. 124, pp. 311–317, 2022, https://doi.org/10.1016/j.isatra.2020.07.038.Suche in Google Scholar PubMed

[45] Z. S. Aghayan, A. Alfi, Y. Mousavi, and A. Fekih, “Criteria for stability and stabilization of variable fractional-order uncertain neutral systems with time-varying delay: delay-dependent analysis,” IEEE Trans. Circ. Syst. II Express Briefs, vol. 70, no. 9, pp. 3393–3397, 2023. https://doi.org/10.1109/tcsii.2023.3257083.Suche in Google Scholar

Received: 2023-09-11
Accepted: 2024-06-03
Published Online: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jncds-2023-0073/html
Button zum nach oben scrollen