Home Group codes over binary tetrahedral group
Article Open Access

Group codes over binary tetrahedral group

  • Madhu Dadhwal EMAIL logo and Pankaj
Published/Copyright: December 13, 2022
Become an author with De Gruyter Brill

Abstract

In this article, the group algebra K [ T ] of the binary tetrahedral group T over a splitting field K of T with char ( K ) 2 , 3 is studied and the unique idempotents corresponding to all seven characters of the binary tetrahedral group are computed. Furthermore, the minimum weights and dimensions of various group codes generated by linear and nonlinear idempotents in this group algebra are characterized to establish these group codes.

MSC 2010: 94B05; 20B35; 20C05

1 Introduction

The coding theory originated as an inspiration by a famous paper of Shannon [1] published in 1948. Coding theory deals with the problem of detecting and correcting transmission errors which arise when useful information is communicated through a noisy channel. The theory of error correcting codes pertains to the study of reliable transmission of information through a noisy channel using some encoding and decoding procedures. Furthermore, the study of coding techniques involving some encoding and decoding procedures that are based on algebraic techniques for the detection and correction of errors in the transmitted information is called algebraic coding theory.

In the algebraic coding theory, codes constructed using group algebras over Abelian and non-Abelian groups of finite order (see [2,3, 4,5]) are turned out to be ideals or subspaces in the respective group algebras. However, a group algebra code may not form an ideal in some algebraic structures, for instance, the algebraic codes constructed from zero divisors and units in group rings [6] do not form ideals. In addition, group algebra codes play a significant role in the error correction and detection for reliable communications. The development in the study of group algebraic codes got popularized after 1967, when Berman [7] proved that cyclic codes and Reed Muller codes are ideals in a group algebra. Denis Wong and Ang [8] constructed dihedral group codes generated by linear and nonlinear idempotents in a group algebra of dihedral groups of order 6, 8, 10, and 12. Furthermore, in ref. [9] these results were extended to the general case by constructing dihedral group codes generated by linear idempotents in the group algebra of the dihedral group of order 2 n , for arbitrary n . Also, they have obtained dihedral group codes generated by nonlinear idempotents in group algebras of dihedral groups of order 16, 20, and 24.

An important algebraic structure constructed by combining a finite group G and a field K is the group algebra K [ G ] = g G a g g : a g K , which is the free K -module over G with the elements of group G as a K -basis for K [ G ] (see ref. [10]). The set K [ G ] contains all the formal K -linear combinations of elements of group G and it can be made into an associative K -algebra by naturally extending the operations of both K and G to define addition and multiplication of elements in K [ G ] as: g G a g g + g G b g g = g G ( a g + b g ) g ; g G a g g h G b h h = x G g h = x G a g b h x , with the identity element 1 = 1 K 1 G , where 1 K and 1 G are the identity elements of K and G , respectively. This associative K -algebra K [ G ] is equipped with the scalar multiplication defined by α g G a g g = g G ( α a g ) g , for α K . Moreover, an element g G can be identified with an element 1 . g in K [ G ] , in this way, G K [ G ] and the elements of G constitute the coding basis for group codes when viewed as subspaces in K [ G ] .

A group algebra code in K [ G ] is a one-sided (left or right) ideal in K [ G ] , while if K [ G ] is regarded as a vector space, then a group algebra code is a subspace in K [ G ] . Furthermore, a code in a group algebra K [ G ] is called a cyclic code or an Abelian code, if the group G is cyclic or Abelian. Also, if a code is a vector subspace of K [ G ] , then it is called a linear code. In addition, if char ( K ) G , then K [ G ] is semisimple and hence can be decomposed as a direct sum K [ G ] = i K G e k , where K G e k is the minimal ideal generated by the idempotent e k (see ref. [11]). Assume that E = { e i } i = 1 s is the set of idempotents in K [ G ] and if K [ G ] is semisimple, then any ideal I in K [ G ] can be expressed as a direct sum of minimal ideals in { K G e j } e j E , which are generated by a single element e j E , i.e., I = x E 1 K G x , for some subset E 1 of E . In this case, an ideal I generated by a subset E = { e i } i = 1 t of the set E in K [ G ] is given by I = { u K [ G ] : u e j = 0 for all e j E E } and for simplicity I is denoted by I μ , where μ = E E , the complement of E in E . Furthermore, the length of a group code I μ in K [ G ] is defined as the order of the group G and is denoted by n . The weight w t ( u ) of an element u = g G a g g is the number of nonzero coefficients in the presentation of u with elements of G as basis, i.e., w t ( u ) = { a g : a g 0 } . Let I μ be a group algebra code in K [ G ] with its dimension as a subspace over K is k and the minimum distance d , where d = d ( I μ ) = min { w t ( u ) : 0 u and u e i = 0 for all e i μ } . Then the group algebra code I μ is called a ( n , k , d ) group code. Moreover, a linear ( n , k , d ) group code over K is called a maximum distance separable (MDS) group code, if d = n k + 1 .

Most importantly, the choice of a field K and a group G has a significant influence on the study of group codes in the group algebra K [ G ] . Throughout this article, T is the binary tetrahedral group and K is a splitting field of the group T with char ( K ) T , more precisely, char ( K ) 2 , 3 . The group T is the semi direct product of the unit quaternion group and the cyclic group of order 3, i.e., T = Q 8 Z 3 . This group can also be seen as the preimage of the group of symmetries of tetrahedron under the 2:1 covering homomorphism SU ( 2 ) SO ( 3 ) between the special orthogonal group by the spin group, as the group of symmetries of tetrahedron is isomorphic to a subgroup in the special orthogonal group generated by ι 0 0 ι  and   1 + ι 1 + ι 1 + ι 0 1 ι . The group T also has connection with Hurwitz numbers, as the set of invertible Hurwitz numbers ± 1 , ± ι , ± j , ± k , ± 1 ± ι ± j ± k 2 form a group under multiplication, which is isomorphic to the binary tetrahedral group. The group T of order 24 has its abstract presentation as a group generated by r , s , and t satisfying the relations r 2 = s 3 = t 3 = r s t with o ( r ) = 4 , o ( s ) = o ( t ) = 6 .

The main objective of this article is to obtain group codes generated by linear and nonlinear idempotents in the group algebra K [ T ] . To achieve this aim we first compute the idempotents in K [ T ] corresponding to the characters in T . Finally, we establish the group codes in K [ T ] , which are generated by the idempotents in K [ T ] .

2 Group codes in K [ T ]

The binary tetrahedral group T can be regarded as a subgroup generated by the permutations a = ( 4 5 6 7 ) ( 8 9 10 11 ) , b = ( 4 8 6 10 ) ( 5 11 7 9 ) , and c = ( 1 2 3 ) ( 5 11 10 ) ( 7 9 8 ) in the symmetric group S 11 . Thus, the elements of binary tetrahedral group as words using its generators a , b , and c as letters can be listed in a set as follows:

T = { 1 , a 2 , a , b , a b , b a , a 3 , b 3 , c 2 , b c 2 , c 2 b , a 3 c 2 , a c 2 , c 2 a , c 2 a 2 , c 2 b 3 , c , a c , c a , c b a , b c , a 2 c , a b c , c a b a }

Furthermore, T has seven conjugacy classes which are given by

C 1 = { 1 } , C 2 = { a 2 } , C 3 = { a , b , a b , b a , a 3 , b 3 } , C 4 = { c 2 , b c 2 , c 2 b , a 3 c 2 } , C 5 = { a c 2 , c 2 a , c 2 a 2 , c 2 b 3 } , C 6 = { c , a c , c a , c b a } , C 7 = { b c , a 2 c , a b c , c a b a } .

Consequently, the group T has seven characters, precisely; three linear characters χ 1 , χ 2 , χ 3 and four nonlinear characters χ 4 , χ 5 , χ 6 , χ 7 , out of which the characters χ 4 , χ 5 , χ 6 are of degree 2 and χ 7 is the character of degree 3 and ω represents a cube root of unity as discussed in Table 1.

Table 1

Character table of T

Characters Conjugacy classes
C 1 C 2 C 3 C 4 C 5 C 6 C 7
χ 1 1 1 1 1 1 1 1
χ 2 1 1 1 ω ω ω 2 ω 2
χ 3 1 1 1 ω 2 ω 2 ω ω
χ 4 2 2 0 1 1 1 1
χ 5 2 2 0 ω 2 ω 2 ω ω
χ 6 2 2 0 ω ω ω 2 ω 2
χ 7 3 3 1 0 0 0 0

As we have gathered all the necessary information required to compute the unique idempotents corresponding to each character of T , we list them in the upcoming two lemmas by using Proposition 14.10 of [12], which states that: If χ is a character of K [ G ] -module, then the unique idempotent corresponding to the character χ is given by e = 1 G g G χ ( g 1 ) g . Moreover, an idempotent is termed as linear or nonlinear idempotent, if it corresponds to a linear or nonlinear character, respectively. For convenience sake, throughout the rest of this article we denote the class sum of a conjugacy class C i by C i ¯ and the i th element of the set T described in the beginning of this section by g i . The Cayley table of T is given in Table 2.

Table 2

Composition table of T

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11 g 12 g 13 g 14 g 15 g 16 g 17 g 18 g 19 g 20 g 21 g 22 g 23 g 24
g 1 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11 g 12 g 13 g 14 g 15 g 16 g 17 g 18 g 19 g 20 g 21 g 22 g 23 g 24
g 2 g 2 g 1 g 7 g 8 g 6 g 5 g 3 g 4 g 15 g 14 g 16 g 13 g 12 g 10 g 9 g 11 g 22 g 24 g 23 g 21 g 20 g 17 g 19 g 18
g 3 g 3 g 7 g 2 g 5 g 8 g 4 g 1 g 6 g 13 g 11 g 14 g 9 g 15 g 16 g 12 g 10 g 18 g 22 g 21 g 19 g 23 g 24 g 20 g 17
g 4 g 4 g 8 g 6 g 2 g 3 g 7 g 5 g 1 g 10 g 15 g 13 g 11 g 16 g 9 g 14 g 12 g 21 g 19 g 24 g 17 g 22 g 20 g 18 g 23
g 5 g 5 g 6 g 4 g 7 g 2 g 1 g 8 g 3 g 11 g 12 g 15 g 14 g 10 g 13 g 16 g 9 g 23 g 21 g 17 g 18 g 24 g 19 g 22 g 20
g 6 g 6 g 5 g 8 g 3 g 1 g 2 g 4 g 7 g 16 g 13 g 9 g 10 g 14 g 12 g 11 g 15 g 19 g 20 g 22 g 24 g 18 g 23 g 17 g 21
g 7 g 7 g 3 g 1 g 6 g 4 g 8 g 2 g 5 g 12 g 16 g 10 g 15 g 9 g 11 g 13 g 14 g 24 g 17 g 20 g 23 g 19 g 18 g 21 g 22
g 8 g 8 g 4 g 5 g 1 g 7 g 3 g 6 g 2 g 14 g 9 g 12 g 16 g 11 g 15 g 10 g 13 g 20 g 23 g 18 g 22 g 17 g 21 g 24 g 19
g 9 g 9 g 15 g 14 g 11 g 12 g 13 g 10 g 16 g 17 g 23 g 24 g 21 g 20 g 19 g 22 g 18 g 1 g 8 g 3 g 6 g 5 g 2 g 7 g 4
g 10 g 10 g 14 g 9 g 13 g 11 g 16 g 15 g 12 g 21 g 18 g 23 g 22 g 17 g 24 g 20 g 19 g 4 g 1 g 6 g 7 g 3 g 8 g 5 g 2
g 11 g 11 g 16 g 13 g 15 g 14 g 10 g 12 g 9 g 23 g 22 g 20 g 24 g 18 g 17 g 19 g 21 g 5 g 3 g 4 g 1 g 2 g 6 g 8 g 7
g 12 g 12 g 13 g 11 g 10 g 15 g 9 g 16 g 14 g 24 g 21 g 22 g 19 g 23 g 20 g 18 g 17 g 7 g 5 g 1 g 8 g 4 g 3 g 2 g 6
g 13 g 13 g 12 g 16 g 14 g 9 g 15 g 11 g 10 g 18 g 20 g 17 g 23 g 19 g 21 g 24 g 22 g 3 g 6 g 2 g 4 g 8 g 7 g 1 g 5
g 14 g 14 g 10 g 15 g 12 g 16 g 11 g 9 g 13 g 20 g 24 g 19 g 17 g 22 g 18 g 21 g 23 g 8 g 2 g 5 g 3 g 7 g 4 g 6 g 1
g 15 g 15 g 9 g 10 g 16 g 13 g 12 g 14 g 11 g 22 g 19 g 18 g 20 g 21 g 23 g 17 g 24 g 2 g 4 g 7 g 5 g 6 g 1 g 3 g 8
g 16 g 16 g 11 g 12 g 9 g 10 g 14 g 13 g 15 g 19 g 17 g 21 g 18 g 24 g 22 g 23 g 20 g 6 g 7 g 8 g 2 g 1 g 5 g 4 g 3
g 17 g 17 g 22 g 19 g 24 g 21 g 20 g 23 g 18 g 1 g 7 g 4 g 5 g 6 g 3 g 2 g 8 g 9 g 16 g 14 g 13 g 12 g 15 g 10 g 11
g 18 g 18 g 24 g 21 g 17 g 23 g 19 g 20 g 22 g 3 g 1 g 5 g 8 g 4 g 2 g 7 g 6 g 13 g 10 g 16 g 15 g 9 g 12 g 11 g 14
g 19 g 19 g 23 g 22 g 21 g 18 g 24 g 17 g 20 g 6 g 4 g 3 g 1 g 2 g 8 g 5 g 7 g 16 g 15 g 12 g 14 g 10 g 11 g 13 g 9
g 20 g 20 g 21 g 18 g 19 g 17 g 22 g 24 g 23 g 8 g 6 g 1 g 7 g 3 g 5 g 4 g 2 g 14 g 13 g 15 g 11 g 16 g 10 g 9 g 12
g 21 g 21 g 20 g 24 g 23 g 22 g 17 g 18 g 19 g 4 g 5 g 2 g 3 g 7 g 6 g 8 g 1 g 10 g 12 g 9 g 16 g 11 g 14 g 15 g 13
g 22 g 22 g 17 g 23 g 18 g 20 g 21 g 19 g 24 g 2 g 3 g 8 g 6 g 5 g 7 g 1 g 4 g 15 g 11 g 10 g 12 g 13 g 9 g 14 g 16
g 23 g 23 g 19 g 17 g 20 g 24 g 18 g 22 g 21 g 5 g 8 g 7 g 2 g 1 g 4 g 6 g 3 g 11 g 9 g 13 g 10 g 14 g 16 g 12 g 15
g 24 g 24 g 18 g 20 g 22 g 19 g 23 g 21 g 17 g 7 g 2 g 6 g 4 g 8 g 1 g 3 g 5 g 12 g 14 g 11 g 9 g 15 g 13 g 16 g 10

Lemma 2.1

The linear idempotents in K [ T ] are given by

e 1 = 1 24 [ 1 + C 2 ¯ + C 3 ¯ + C 4 ¯ + C 5 ¯ + C 6 ¯ + C 7 ¯ ] , e 2 = 1 24 [ 1 + C 2 ¯ + C 3 ¯ + ω 2 C 4 ¯ + ω 2 C 5 ¯ + ω C 6 ¯ + ω C 7 ¯ ] , e 3 = 1 24 [ 1 + C 2 ¯ + C 3 ¯ + ω C 4 ¯ + ω C 5 ¯ + ω 2 C 6 ¯ + ω 2 C 7 ¯ ] where C i ¯ = g C i g .

Lemma 2.2

The nonlinear idempotents in K [ T ] are given by

v 1 = 1 24 [ 2 2 C 2 ¯ C 4 ¯ + C 5 ¯ C 6 ¯ + C 7 ¯ ] , v 2 = 1 24 [ 2 2 C 2 ¯ ω C 4 ¯ + ω C 5 ¯ ω 2 C 6 ¯ + ω 2 C 7 ¯ ] , v 3 = 1 24 [ 2 2 C 2 ¯ ω 2 C 4 ¯ + ω 2 C 5 ¯ ω C 6 ¯ + ω C 7 ¯ ] , v 4 = 1 24 [ 3 + 3 C 2 ¯ C 3 ¯ ] ; w h e r e C i ¯ = g C i g .

Furthermore, we shall compute the product of an arbitrary element and the idempotents in K [ T ] by using Table 2 and use these products to construct various group codes in K [ T ] . Now, let u = r = 1 24 λ r g r be an arbitrary element in K [ T ] with λ r K for r = 1 , 2 , , 24 , then calculating according to SageMath [13], we have

(2.1) u e 1 = r = 1 24 λ r e 1 .

(2.2) u e 2 = r = 1 8 λ r + ω r = 9 16 λ r + ω 2 r = 17 24 λ r e 2 .

(2.3) u e 3 = r = 1 8 λ r + ω 2 r = 9 16 λ r + ω r = 17 24 λ r e 3 .

Moreover, we have the following products for the nonlinear idempotents in K [ T ] .

u v 1 = 1 24 [ 2 λ 1 2 λ 2 λ 9 λ 10 λ 11 λ 12 + λ 13 + λ 14 + λ 15 + λ 16 λ 17 λ 18 λ 19 λ 20 + λ 21 + λ 22 + λ 23 + λ 24 ] g 1 + [ 2 λ 1 + 2 λ 2 + λ 9 + λ 10 + λ 11 + λ 12 λ 13 λ 14 λ 15 λ 16 + λ 17 + λ 18 + λ 19 + λ 20 λ 21 λ 22 λ 23 λ 24 ] g 2 + [ 2 λ 3 2 λ 7 λ 9 + λ 10 λ 11 + λ 12 λ 13 λ 14 + λ 15 + λ 16 + λ 17 λ 18 λ 19 + λ 20 λ 21 λ 22 + λ 23 + λ 24 ] g 3 + [ 2 λ 4 2 λ 8 + λ 9 λ 10 λ 11 + λ 12 λ 13 + λ 14 λ 15 + λ 16 λ 17 + λ 18 λ 19 + λ 20 λ 21 + λ 22 + λ 23 λ 24 ] g 4 + [ 2 λ 5 2 λ 6 + λ 9 + λ 10 λ 11 λ 12 + λ 13 λ 14 λ 15 + λ 16 λ 17 λ 18 + λ 19 + λ 20 λ 21 + λ 22 λ 23 + λ 24 ] g 5 + [ 2 λ 5 + 2 λ 6 λ 9 λ 10 + λ 11 + λ 12 λ 13 + λ 14 + λ 15 λ 16 + λ 17 + λ 18 λ 19 λ 20 + λ 21 λ 22 + λ 23 λ 24 ] g 6 + [ 2 λ 3 + 2 λ 7 + λ 9 λ 10 + λ 11 λ 12 + λ 13 + λ 14 λ 15 λ 16 λ 17 + λ 18 + λ 19 λ 20 + λ 21 + λ 22 λ 23 λ 24 ] g 7 + [ 2 λ 4 + 2 λ 8 λ 9 + λ 10 + λ 11 λ 12 + λ 13 λ 14 + λ 15 λ 16 + λ 17 λ 18 + λ 19 λ 20 + λ 21 λ 22 λ 23 + λ 24 ] g 8 + [ λ 1 + λ 2 λ 3 + λ 4 + λ 5 λ 6 + λ 7 λ 8 + 2 λ 9 2 λ 15 λ 17 + λ 18 + λ 19 + λ 20 λ 21 + λ 22 λ 23 λ 24 ] g 9 + [ λ 1 + λ 2 + λ 3 λ 4 + λ 5 λ 6 λ 7 + λ 8 + 2 λ 10 2 λ 14 + λ 17 λ 18 + λ 19 + λ 20 λ 21 λ 22 λ 23 + λ 24 ] g 10 + [ λ 1 + λ 2 λ 3 λ 4 λ 5 + λ 6 + λ 7 + λ 8 + 2 λ 11 2 λ 16 + λ 17 + λ 18 + λ 19 λ 20 + λ 21 λ 22 λ 23 λ 24 ] g 11 + [ λ 1 + λ 2 + λ 3 + λ 4 λ 5 + λ 6 λ 7 λ 8 + 2 λ 12 2 λ 13 + λ 17 + λ 18 λ 19 + λ 20 λ 21 λ 22 + λ 23 λ 24 ] g 12 + [ λ 1 λ 2 λ 3 λ 4 + λ 5 λ 6 + λ 7 + λ 8 2 λ 12 + 2 λ 13 λ 17 λ 18 + λ 19 λ 20 + λ 21 + λ 22 λ 23 + λ 24 ] g 13 + [ λ 1 λ 2 λ 3 + λ 4 λ 5 + λ 6 + λ 7 λ 8 2 λ 10 + 2 λ 14 λ 17 + λ 18 λ 19 λ 20 + λ 21 + λ 22 + λ 23 λ 24 ] g 14 + [ λ 1 λ 2 + λ 3 λ 4 λ 5 + λ 6 λ 7 + λ 8 2 λ 9 + 2 λ 15 + λ 17 λ 18 λ 19 λ 20 + λ 21 λ 22 + λ 23 + λ 24 ] g 15 + [ λ 1 λ 2 + λ 3 + λ 4 + λ 5 λ 6 λ 7 λ 8 2 λ 11 + 2 λ 16 λ 17 λ 18 λ 19 + λ 20 λ 21 + λ 22 + λ 23 + λ 24 ] g 16 + [ λ 1 + λ 2 + λ 3 λ 4 λ 5 + λ 6 λ 7 + λ 8 λ 9 + λ 10 + λ 11 + λ 12 λ 13 λ 14 + λ 15 λ 16 + 2 λ 17 2 λ 22 ] g 17 + [ λ 1 + λ 2 λ 3 + λ 4 λ 5 + λ 6 + λ 7 λ 8 + λ 9 λ 10 + λ 11 + λ 12 λ 13 + λ 14 λ 15 λ 16 + 2 λ 18 2 λ 24 ] g 18 + [ λ 1 + λ 2 λ 3 λ 4 + λ 5 λ 6 + λ 7 + λ 8 + λ 9 + λ 10 + λ 11 λ 12 + λ 13 λ 14 λ 15 λ 16 + 2 λ 19 2 λ 23 ] g 19 + [ λ 1 + λ 2 + λ 3 + λ 4 + λ 5 λ 6 λ 7 λ 8 + λ 9 + λ 10 λ 11 + λ 12 λ 13 λ 14 λ 15 + λ 16 + 2 λ 20 2 λ 21 ] g 20 + [ λ 1 λ 2 λ 3 λ 4 λ 5 + λ 6 + λ 7 + λ 8 λ 9 λ 10 + λ 11 λ 12 + λ 13 + λ 14 + λ 15 λ 16 2 λ 20 + 2 λ 21 ] g 21 + [ λ 1 λ 2 λ 3 + λ 4 + λ 5 λ 6 + λ 7 λ 8 + λ 9 λ 10 λ 11 λ 12 + λ 13 + λ 14 λ 15 + λ 16 2 λ 17 + 2 λ 22 ] g 22 + [ λ 1 λ 2 + λ 3 + λ 4 λ 5 + λ 6 λ 7 λ 8 λ 9 λ 10 λ 11 + λ 12 λ 13 + λ 14 + λ 15 + λ 16 2 λ 19 + 2 λ 23 ] g 23 + [ λ 1 λ 2 + λ 3 λ 4 + λ 5 λ 6 λ 7 + λ 8 λ 9 + λ 10 λ 11 λ 12 + λ 13 λ 14 + λ 15 + λ 16 2 λ 18 + 2 λ 24 ] g 24

Similarly, the products u v 2 , u v 3 , and u v 4 can be calculated.

u v 2 = 1 24 [ 2 λ 1 2 λ 2 ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 ω λ 17 ω λ 18 ω λ 19 ω λ 20 + ω λ 21 + ω λ 22 + ω λ 23 + ω λ 24 ] g 1 + [ 2 λ 1 + 2 λ 2 + ω 2 λ 9 + ω 2 λ 10 + ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 ω 2 λ 14 ω 2 λ 15 ω 2 λ 16 + ω λ 17 + ω λ 18 + ω λ 19 + ω λ 20 ω λ 21 ω λ 22 ω λ 23 ω λ 24 ] g 2 + [ 2 λ 3 2 λ 7 ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 + ω λ 17 ω λ 18 ω λ 19 + ω λ 20 ω λ 21 ω λ 22 + ω λ 23 + ω λ 24 ] g 3 + [ 2 λ 4 2 λ 8 + ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 + ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 ω λ 17 + ω λ 18 ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 + ω λ 23 ω λ 24 ] g 4 + [ 2 λ 5 2 λ 6 + ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 ω λ 17 ω λ 18 + ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 ω λ 23 + ω λ 24 ] g 5 + [ 2 λ 5 + 2 λ 6 ω 2 λ 9 ω 2 λ 10 + ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 ω 2 λ 16 + ω λ 17 + ω λ 18 ω λ 19 ω λ 20 + ω λ 21 ω λ 22 + ω λ 23 ω λ 24 ] g 6 + [ 2 λ 3 + 2 λ 7 + ω 2 λ 9 ω 2 λ 10 + ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 ω 2 λ 15 ω 2 λ 16 ω λ 17 + ω λ 18 + ω λ 19 ω λ 20 + ω λ 21 + ω λ 22 ω λ 23 ω λ 24 ] g 7 + [ 2 λ 4 + 2 λ 8 ω 2 λ 9 + ω 2 λ 10 + ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 ω 2 λ 14 + ω 2 λ 15 ω 2 λ 16 + ω λ 17 ω λ 18 + ω λ 19 ω λ 20 + ω λ 21 ω λ 22 ω λ 23 + ω λ 24 ] g 8

+ [ ω λ 1 + ω λ 2 ω λ 3 + ω λ 4 + ω λ 5 ω λ 6 + ω λ 7 ω λ 8 + 2 λ 9 2 λ 15 ω 2 λ 17 + ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 ω 2 λ 23 ω 2 λ 24 ] g 9 + [ ω λ 1 + ω λ 2 + ω λ 3 ω λ 4 + ω λ 5 ω λ 6 ω λ 7 + ω λ 8 + 2 λ 10 2 λ 14 + ω 2 λ 17 ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 ω 2 λ 22 ω 2 λ 23 + ω 2 λ 24 ] g 10 + [ ω λ 1 + ω λ 2 ω λ 3 ω λ 4 ω λ 5 + ω λ 6 + ω λ 7 + ω λ 8 + 2 λ 11 2 λ 16 + ω 2 λ 17 + ω 2 λ 18 + ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 ω 2 λ 22 ω 2 λ 23 ω 2 λ 24 ] g 11 + [ ω λ 1 + ω λ 2 + ω λ 3 + ω λ 4 ω λ 5 + ω λ 6 ω λ 7 ω λ 8 + 2 λ 12 2 λ 13 + ω 2 λ 17 + ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 ω 2 λ 22 + ω 2 λ 23 ω 2 λ 24 ] g 12 + [ ω λ 1 ω λ 2 ω λ 3 ω λ 4 + ω λ 5 ω λ 6 + ω λ 7 + ω λ 8 2 λ 12 + 2 λ 13 ω 2 λ 17 ω 2 λ 18 + ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 ω 2 λ 23 + ω 2 λ 24 ] g 13 + [ ω λ 1 ω λ 2 ω λ 3 + ω λ 4 ω λ 5 + ω λ 6 + ω λ 7 ω λ 8 2 λ 10 + 2 λ 14 ω 2 λ 17 + ω 2 λ 18 ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 ω 2 λ 24 ] g 14 + [ ω λ 1 ω λ 2 + ω λ 3 ω λ 4 ω λ 5 + ω λ 6 ω λ 7 + ω λ 8 2 λ 9 + 2 λ 15 + ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 ] g 15 + [ ω λ 1 ω λ 2 + ω λ 3 + ω λ 4 + ω λ 5 ω λ 6 ω λ 7 ω λ 8 2 λ 11 + 2 λ 16 ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 ] g 16 + [ ω 2 λ 1 + ω 2 λ 2 + ω 2 λ 3 ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 ω 2 λ 7 + ω 2 λ 8 ω λ 9 + ω λ 10 + ω λ 11 + ω λ 12 ω λ 13 ω λ 14 + ω λ 15 ω λ 16 + 2 λ 17 2 λ 22 ] g 17 + [ ω 2 λ 1 + ω 2 λ 2 ω 2 λ 3 + ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 + ω 2 λ 7 ω 2 λ 8 + ω λ 9 ω λ 10 + ω λ 11 + ω λ 12 ω λ 13 + ω λ 14 ω λ 15 ω λ 16 + 2 λ 18 2 λ 24 ] g 18

+ [ ω 2 λ 1 + ω 2 λ 2 ω 2 λ 3 ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 + ω 2 λ 7 + ω 2 λ 8 + ω λ 9 + ω λ 10 + ω λ 11 ω λ 12 + ω λ 13 ω λ 14 ω λ 15 ω λ 16 + 2 λ 19 2 λ 23 ] g 19 + [ ω 2 λ 1 + ω 2 λ 2 + ω 2 λ 3 + ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 ω 2 λ 7 ω 2 λ 8 + ω λ 9 + ω λ 10 ω λ 11 + ω λ 12 ω λ 13 ω λ 14 ω λ 15 + ω λ 16 + 2 λ 20 2 λ 21 ] g 20 + [ ω 2 λ 1 ω 2 λ 2 ω 2 λ 3 ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 + ω 2 λ 7 + ω 2 λ 8 ω λ 9 ω λ 10 + ω λ 11 ω λ 12 + ω λ 13 + ω λ 14 + ω λ 15 ω λ 16 2 λ 20 + 2 λ 21 ] g 21 + [ ω 2 λ 1 ω 2 λ 2 ω 2 λ 3 + ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 + ω 2 λ 7 ω 2 λ 8 + ω λ 9 ω λ 10 ω λ 11 ω λ 12 + ω λ 13 + ω λ 14 ω λ 15 + ω λ 16 2 λ 17 + 2 λ 22 ] g 22 + [ ω 2 λ 1 ω 2 λ 2 + ω 2 λ 3 + ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 ω 2 λ 7 ω 2 λ 8 ω λ 9 ω λ 10 ω λ 11 + ω λ 12 ω λ 13 + ω λ 14 + ω λ 15 + ω λ 16 2 λ 19 + 2 λ 23 ] g 23 + [ ω 2 λ 1 ω 2 λ 2 + ω 2 λ 3 ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 ω 2 λ 7 + ω 2 λ 8 ω λ 9 + ω λ 10 ω λ 11 ω λ 12 + ω λ 13 ω λ 14 + ω λ 15 + ω λ 16 2 λ 18 + 2 λ 24 ] g 24

u v 3 = 1 24 [ 2 λ 1 2 λ 2 ω λ 9 ω λ 10 ω λ 11 ω λ 12 + ω λ 13 + ω λ 14 + ω λ 15 + ω λ 16 ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 ] g 1 + [ 2 λ 1 + 2 λ 2 + ω λ 9 + ω λ 10 + ω λ 11 + ω λ 12 ω λ 13 ω λ 14 ω λ 15 ω λ 16 + ω 2 λ 17 + ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 ω 2 λ 22 ω 2 λ 23 ω 2 λ 24 ] g 2 + [ 2 λ 3 2 λ 7 ω λ 9 + ω λ 10 ω λ 11 + ω λ 12 ω λ 13 ω λ 14 + ω λ 15 + ω λ 16 + ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 ] g 3 + [ 2 λ 4 2 λ 8 + ω λ 9 ω λ 10 ω λ 11 + ω λ 12 ω λ 13 + ω λ 14 ω λ 15 + ω λ 16 ω 2 λ 17 + ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 ω 2 λ 24 ] g 4 + [ 2 λ 5 2 λ 6 + ω λ 9 + ω λ 10 ω λ 11 ω λ 12 + ω λ 13 ω λ 14 ω λ 15 + ω λ 16 ω 2 λ 17 ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 ω 2 λ 23 + ω 2 λ 24 ] g 5 + [ 2 λ 5 + 2 λ 6 ω λ 9 ω λ 10 + ω λ 11 + ω λ 12 ω λ 13 + ω λ 14 + ω λ 15 ω λ 16 + ω 2 λ 17 + ω 2 λ 18 ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 ω 2 λ 22 + ω 2 λ 23 ω 2 λ 24 ] g 6 + [ 2 λ 3 + 2 λ 7 + ω λ 9 ω λ 10 + ω λ 11 ω λ 12 + ω λ 13 + ω λ 14 ω λ 15 ω λ 16 ω 2 λ 17 + ω 2 λ 18 + ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 ω 2 λ 23 ω 2 λ 24 ] g 7 + [ 2 λ 4 + 2 λ 8 ω λ 9 + ω λ 10 + ω λ 11 ω λ 12 + ω λ 13 ω λ 14 + ω λ 15 ω λ 16 + ω 2 λ 17 ω 2 λ 18 + ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 ω 2 λ 22 ω 2 λ 23 + ω 2 λ 24 ] g 8

+ [ ω 2 λ 1 + ω 2 λ 2 ω 2 λ 3 + ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 + ω 2 λ 7 ω 2 λ 8 + 2 λ 9 2 λ 15 ω λ 17 + ω λ 18 + ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 ω λ 23 ω λ 24 ] g 9 + [ ω 2 λ 1 + ω 2 λ 2 + ω 2 λ 3 ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 ω 2 λ 7 + ω 2 λ 8 + 2 λ 10 2 λ 14 + ω λ 17 ω λ 18 + ω λ 19 + ω λ 20 ω λ 21 ω λ 22 ω λ 23 + ω λ 24 ] g 10 + [ ω 2 λ 1 + ω 2 λ 2 ω 2 λ 3 ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 + ω 2 λ 7 + ω 2 λ 8 + 2 λ 11 2 λ 16 + ω λ 17 + ω λ 18 + ω λ 19 ω λ 20 + ω λ 21 ω λ 22 ω λ 23 ω λ 24 ] g 11 + [ ω 2 λ 1 + ω 2 λ 2 + ω 2 λ 3 + ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 ω 2 λ 7 ω 2 λ 8 + 2 λ 12 2 λ 13 + ω λ 17 + ω λ 18 ω λ 19 + ω λ 20 ω λ 21 ω λ 22 + ω λ 23 ω λ 24 ] g 12 + [ ω 2 λ 1 ω 2 λ 2 ω 2 λ 3 ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 + ω 2 λ 7 + ω 2 λ 8 2 λ 12 + 2 λ 13 ω λ 17 ω λ 18 + ω λ 19 ω λ 20 + ω λ 21 + ω λ 22 ω λ 23 + ω λ 24 ] g 13 + [ ω 2 λ 1 ω 2 λ 2 ω 2 λ 3 + ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 + ω 2 λ 7 ω 2 λ 8 2 λ 10 + 2 λ 14 ω λ 17 + ω λ 18 ω λ 19 ω λ 20 + ω λ 21 + ω λ 22 + ω λ 23 ω λ 24 ] g 14 + [ ω 2 λ 1 ω 2 λ 2 + ω 2 λ 3 ω 2 λ 4 ω 2 λ 5 + ω 2 λ 6 ω 2 λ 7 + ω 2 λ 8 2 λ 9 + 2 λ 15 + ω λ 17 ω λ 18 ω λ 19 ω λ 20 + ω λ 21 ω λ 22 + ω λ 23 + ω λ 24 ] g 15 + [ ω 2 λ 1 ω 2 λ 2 + ω 2 λ 3 + ω 2 λ 4 + ω 2 λ 5 ω 2 λ 6 ω 2 λ 7 ω 2 λ 8 2 λ 11 + 2 λ 16 ω λ 17 ω λ 18 ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 + ω λ 23 + ω λ 24 ] g 16

+ [ ω λ 1 + ω λ 2 + ω λ 3 ω λ 4 ω λ 5 + ω λ 6 ω λ 7 + ω λ 8 ω 2 λ 9 + ω 2 λ 10 + ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 ω 2 λ 14 + ω 2 λ 15 ω 2 λ 16 + 2 λ 17 2 λ 22 ] g 17 + [ ω λ 1 + ω λ 2 ω λ 3 + ω λ 4 ω λ 5 + ω λ 6 + ω λ 7 ω λ 8 + ω 2 λ 9 ω 2 λ 10 + ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 + ω 2 λ 14 ω 2 λ 15 ω 2 λ 16 + 2 λ 18 2 λ 24 ] g 18 + [ ω λ 1 + ω λ 2 ω λ 3 ω λ 4 + ω λ 5 ω λ 6 + ω λ 7 + ω λ 8 + ω 2 λ 9 + ω 2 λ 10 + ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 ω 2 λ 14 ω 2 λ 15 ω 2 λ 16 + 2 λ 19 2 λ 23 ] g 19 + [ ω λ 1 + ω λ 2 + ω λ 3 + ω λ 4 + ω λ 5 ω λ 6 ω λ 7 ω λ 8 + ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 + 2 λ 20 2 λ 21 ] g 20 + [ ω λ 1 ω λ 2 ω λ 3 ω λ 4 ω λ 5 + ω λ 6 + ω λ 7 + ω λ 8 ω 2 λ 9 ω 2 λ 10 + ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 ω 2 λ 16 2 λ 20 + 2 λ 21 ] g 21 + [ ω λ 1 ω λ 2 ω λ 3 + ω λ 4 + ω λ 5 ω λ 6 + ω λ 7 ω λ 8 + ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 2 λ 17 + 2 λ 22 ] g 22 + [ ω λ 1 ω λ 2 + ω λ 3 + ω λ 4 ω λ 5 + ω λ 6 ω λ 7 ω λ 8 ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 2 λ 19 + 2 λ 23 ] g 23 + [ ω λ 1 ω λ 2 + ω λ 3 ω λ 4 + ω λ 5 ω λ 6 ω λ 7 + ω λ 8 ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 2 λ 18 + 2 λ 24 ] g 24

u v 4 = 1 24 [ 3 λ 1 + 3 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8 ] ( g 1 + g 2 ) + [ λ 1 λ 2 + 3 λ 3 λ 4 λ 5 λ 6 + 3 λ 7 λ 8 ] ( g 3 + g 7 ) + [ λ 1 λ 2 λ 3 + 3 λ 4 λ 5 λ 6 λ 7 + 3 λ 8 ] ( g 4 + g 8 ) + [ λ 1 λ 2 λ 3 λ 4 + 3 λ 5 + 3 λ 6 λ 7 λ 8 ] ( g 5 + g 6 ) + [ + 3 λ 9 λ 10 λ 11 λ 12 λ 13 λ 14 + 3 λ 15 λ 16 ] ( g 9 + g 15 ) + [ λ 9 + 3 λ 10 λ 11 λ 12 λ 13 + 3 λ 14 λ 15 λ 16 ] ( g 10 + g 14 ) + [ λ 9 λ 10 + 3 λ 11 λ 12 λ 13 λ 14 λ 15 + 3 λ 16 ] ( g 11 + g 16 ) + [ λ 9 λ 10 λ 11 + 3 λ 12 + 3 λ 13 λ 14 λ 15 λ 16 ] ( g 12 + g 13 ) + [ + 3 λ 17 λ 18 λ 19 λ 20 λ 21 + 3 λ 22 λ 23 λ 24 ] ( g 17 + g 22 ) + [ λ 17 + 3 λ 18 λ 19 λ 20 λ 21 λ 22 λ 23 + 3 λ 24 ] ( g 18 + g 24 ) + [ λ 17 λ 18 + 3 λ 19 λ 20 λ 21 λ 22 + 3 λ 23 λ 24 ] ( g 19 + g 23 ) + [ λ 17 λ 18 λ 19 + 3 λ 20 + 3 λ 21 λ 22 λ 23 λ 24 ] ( g 20 + g 21 ) .

In the next theorem, a family of ( 24 , 23 , 2 ) MDS group codes corresponding to the linear idempotents in K [ T ] are computed.

Theorem 2.3

Let e 1 , e 2 , e 3 be linear idempotents in K [ T ] . Then I { e i } for i = 1 , 2 , 3 is the ( 24 , 23 , 2 ) MDS group code.

Proof

Assume u = λ g , for g T and 0 λ K so that w t ( u ) = 1 . By using equations (2.1), (2.2), and (2.3), we have u e i = λ e i or ω λ or ω 2 λ . Clearly, u e i 0 for i = 1 , 2 , 3 . This implies that u I { e i } and hence d ( I { e i } ) 2 . Now, for any choice of two distinct elements s , t from the set { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } , there exists an element u = g s g t K [ T ] with weight 2 such that u e i = ( 1 1 ) e i = 0 . This implies that u I { e i } for every i and hence d ( I { e i } ) = 2 . Moreover, the dimension of I { e i } as a vector space over K is 23. Hence, I { e i } is the ( 24 , 23 , 2 ) MDS group code.□

Theorem 2.4

If e 1 , e 2 , e 3 are linear idempotents in K [ T ] and i , j are two distinct elements of the set { 1 , 2 , 3 } , then

  1. I { e i , e j } is the ( 24 , 22 , 2 ) group code.

  2. I { e 1 , e 2 , e 3 } is the ( 24 , 21 , 2 ) group code.

Proof

Assume that I is the corresponding ideal in ( i ) and ( i i ) . First, observe that it follows from equations (2.1)–(2.3) that u e i = 0 for i { 1 , 2 , 3 } if and only if the i th equation in the following equations is satisfied.

(2.4) λ 1 + λ 2 + λ 3 + λ 4 + λ 5 + λ 6 + λ 7 + λ 8 + λ 9 + λ 10 + λ 11 + λ 12 + λ 13 + λ 14 + λ 15 + λ 16 + λ 17 + λ 18 + λ 19 + λ 20 + λ 21 + λ 22 + λ 23 + λ 24 = 0 .

(2.5) λ 1 + λ 2 + λ 3 + λ 4 + λ 5 + λ 6 + λ 7 + λ 8 + ω λ 9 + ω λ 10 + ω λ 11 + ω λ 12 + ω λ 13 + ω λ 14 + ω λ 15 + ω λ 16 + ω 2 λ 17 + ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 = 0 .

(2.6) λ 1 + λ 2 + λ 3 + λ 4 + λ 5 + λ 6 + λ 7 + λ 8 + ω 2 λ 9 + ω 2 λ 10 + ω 2 λ 11 + ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 + ω λ 17 + ω λ 18 + ω λ 19 + ω λ 20 + ω λ 21 + ω λ 22 + ω λ 23 + ω λ 24 = 0 .

Now, corresponding to ( i ) or ( i i ) , if we choose an element u = λ g , for g T , 0 λ K with w t ( u ) = 1 , then it follows from equations (2.4)–(2.6) that u e i = 0 for i = 1 , 2 , 3 , if and only if λ = 0 . This implies that u I and so d ( I ) 2 . We claim that for any two distinct choices of elements s , t from any of the sets { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } , { 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 } , or { 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 } , there exists an element u = g s g t K [ T ] such that u I . For this, it is enough to show that u e i = 0 , for each i = 1 , 2 , 3 . Clearly, for u = g s g t , we have λ i = 1 , λ j = 1 , and λ k = 0 , for all k { 1 , 2 , , 24 } { i , j } . Therefore, by using equations (2.4)–(2.6), we have u e i = ( 1 1 ) e i = 0 , for i = 1 , 2 , 3 , 4 . Thus, d ( I ) = 2 . Moreover, the dimension of ideal I over K in case ( i ) or ( i i ) is 22 or 21, respectively. Hence the result.□

Theorem 2.5

If v 1 , v 2 , and v 3 are nonlinear idempotents in K [ T ] corresponding to nonlinear characters of degree 2 and i , j are two distinct elements of the set { 1 , 2 , 3 } , then

  1. I { v i } for i = 1 , 2 , 3 is the ( 24 , 20 , 2 ) group code.

  2. I { v i , v j } is the ( 24 , 16 , 2 ) group code.

  3. I { v 1 , v 2 , v 3 } is the ( 24 , 12 , 2 ) group code.

Proof

Let u = r = 1 24 λ r g r K [ T ] and μ { v 1 , v 2 , v 3 } . Then I μ = { u K [ T ] : u x = 0 for all x μ } . Note that u v 1 = 0 if and only if the following equations are satisfied.

(2.7) λ 1 λ 2 + λ 3 + λ 4 + λ 5 λ 6 λ 7 λ 8 2 λ 11 + 2 λ 16 λ 17 λ 18 λ 19 + λ 20 λ 21 + λ 22 + λ 23 + λ 24 = 0 .

(2.8) 2 λ 3 2 λ 7 λ 9 + λ 10 λ 11 + λ 12 λ 13 λ 14 + λ 15 + λ 16 + λ 17 λ 18 λ 19 + λ 20 λ 21 λ 22 + λ 23 + λ 24 = 0 .

(2.9) 2 λ 4 2 λ 8 + λ 9 λ 10 λ 11 + λ 12 λ 13 + λ 14 λ 15 + λ 16 λ 17 + λ 18 λ 19 + λ 20 λ 21 + λ 22 + λ 23 λ 24 = 0 .

(2.10) 2 λ 5 2 λ 6 + λ 9 + λ 10 λ 11 λ 12 + λ 13 λ 14 λ 15 + λ 16 λ 17 λ 18 + λ 19 + λ 20 λ 21 + λ 22 λ 23 + λ 24 = 0 .

However, u v 2 = 0 if and only if the following equations are satisfied.

(2.11) 2 λ 1 2 λ 2 ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 + ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 ω λ 17 ω λ 18 ω λ 19 ω λ 20 + ω λ 21 + ω λ 22 + ω λ 23 + ω λ 24 = 0 .

(2.12) 2 λ 3 2 λ 7 ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 ω 2 λ 14 + ω 2 λ 15 + ω 2 λ 16 + ω λ 17 ω λ 18 ω λ 19 + ω λ 20 ω λ 21 ω λ 22 + ω λ 23 + ω λ 24 = 0 .

(2.13) 2 λ 4 2 λ 8 + ω 2 λ 9 ω 2 λ 10 ω 2 λ 11 + ω 2 λ 12 ω 2 λ 13 + ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 ω λ 17 + ω λ 18 ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 + ω λ 23 ω λ 24 = 0 .

(2.14) 2 λ 5 2 λ 6 + ω 2 λ 9 + ω 2 λ 10 ω 2 λ 11 ω 2 λ 12 + ω 2 λ 13 ω 2 λ 14 ω 2 λ 15 + ω 2 λ 16 ω λ 17 ω λ 18 + ω λ 19 + ω λ 20 ω λ 21 + ω λ 22 ω λ 23 + ω λ 24 = 0 .

However, u v 3 = 0 if and only if the following equations are satisfied.

(2.15) 2 λ 1 2 λ 2 ω λ 9 ω λ 10 ω λ 11 ω λ 12 + ω λ 13 + ω λ 14 + ω λ 15 + ω λ 16 ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 ω 2 λ 20 + ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 = 0 .

(2.16) 2 λ 3 2 λ 7 ω λ 9 + ω λ 10 ω λ 11 + ω λ 12 ω λ 13 ω λ 14 + ω λ 15 + ω λ 16 + ω 2 λ 17 ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 ω 2 λ 22 + ω 2 λ 23 + ω 2 λ 24 = 0 .

(2.17) 2 λ 4 2 λ 8 + ω λ 9 ω λ 10 ω λ 11 + ω λ 12 ω λ 13 + ω λ 14 ω λ 15 + ω λ 16 ω 2 λ 17 + ω 2 λ 18 ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 + ω 2 λ 23 ω 2 λ 24 = 0 .

(2.18) 2 λ 5 2 λ 6 + ω λ 9 + ω λ 10 ω λ 11 ω λ 12 + ω λ 13 ω λ 14 ω λ 15 + ω λ 16 ω 2 λ 17 ω 2 λ 18 + ω 2 λ 19 + ω 2 λ 20 ω 2 λ 21 + ω 2 λ 22 ω 2 λ 23 + ω 2 λ 24 = 0 .

( i ) Let I { v i } be the set of elements of the form u = r = 1 24 λ r g r K [ T ] such that the coefficients in the presentation of u satisfy equations (2.7)–(2.10), if i = 1 , while equations (2.11)–(2.14), if i = 2 , while equations (2.15)–(2.18), if i = 3 . Now, as observed in the previous theorem, we can similarly prove that I { v i } does not contain any element of weight 1. Also, an element with the minimum weight in I { v i } , for i = 1 , 2 , 3 , is u = g 1 + g 2 with weight 2, as the coefficients of λ 1 and λ 2 in equations (2.7)–(2.18) are negative of each other. Thus, we conclude that d ( I { v i } ) = 2 . Moreover, the dimension of I { v i } is 20. Hence, I { v i } is the ( 24 , 20 , 2 ) group code.

( i i ) Let I { v i , v j } be the set of elements of the form u = r = 1 24 λ r g r K [ T ] such that the coefficients in the presentation of u satisfy equations (2.7)–(2.14), if i = 1 , j = 2 or i = 2 , j = 1 , while equations (2.11)–(2.18); if i = 2 , j = 3 or i = 3 , j = 2 , while equations (2.7)–(2.10) and (2.15)–(2.18); if i = 1 , j = 3 or i = 3 , j = 1 , respectively. Now, as observed in the previous theorem, we can similarly prove that I { v i , v j } does not contain any element with weight 1. Also, an element with the minimum weight in I { v i , v j } , is u = g 1 + g 2 with weight 2. Thus, we conclude that d ( I { v i , v j } ) = 2 . Moreover, the dimension of I { v i , v j } is 16. Hence, I { v i , v j } is the ( 24 , 16 , 2 ) group code.

( i i i ) Consider an ideal I { v 1 , v 2 , v 3 } of K [ T ] which consists of the elements of the form u = r = 1 24 λ r g r K [ T ] such that the coefficients in the presentation of u satisfy equations (2.7)–(2.18). Again, one can realize that I { v 1 , v 2 , v 3 } does not contain any element with weight 1 and an element with the minimum weight in I { v 1 , v 2 , v 3 } is u = g 1 + g 2 with its weight 2. Therefore, d ( I { v 1 , v 2 , v 3 } ) = 2 . Moreover, the dimension of I { v 1 , v 2 , v 3 } is 12. Hence, I { v 1 , v 2 , v 3 } is the ( 24 , 12 , 2 ) group code.□

Theorem 2.6

Let v 7 be the nonlinear idempotent in K [ T ] corresponding to nonlinear character of degree 3. Then I { v 7 } is the ( 24 , 15 , 2 ) group code.

Proof

Let I { v 7 } be the set of elements of the form u = r = 1 24 λ r g r K [ T ] such that the coefficients in the presentation of u satisfy the following equations:

(2.19) λ 1 + λ 2 + λ 3 + λ 4 3 λ 5 3 λ 6 + λ 7 + λ 8 = 0 ,

(2.20) λ 9 + λ 10 + λ 11 3 λ 12 3 λ 13 + λ 14 + λ 15 + λ 16 = 0 ,

(2.21) λ 17 + λ 18 + λ 19 3 λ 20 3 λ 21 + λ 22 + λ 23 + λ 24 = 0 ,

(2.22) 4 λ 3 4 λ 5 4 λ 6 + 4 λ 7 = 0 ,

(2.23) 4 λ 4 4 λ 5 4 λ 6 + 4 λ 8 = 0 ,

(2.24) 4 λ 10 4 λ 12 4 λ 13 + 4 λ 14 = 0 ,

(2.25) 4 λ 11 4 λ 12 4 λ 13 + 4 λ 16 = 0 ,

(2.26) 4 λ 18 4 λ 20 4 λ 21 + 4 λ 24 = 0 ,

(2.27) 4 λ 19 4 λ 20 4 λ 21 + 4 λ 23 = 0 .

Now, we can similarly prove that I { v 7 } does not contain any element with weight 1. Also, an element with the minimum weight in I { v 7 } is u = g 1 g 2 with weight 2, as the coefficients of λ 1 and λ 2 in equations (2.19)–(2.27) are equal. This implies that d ( I { v 7 } ) = 2 . Moreover, the dimension of I { v i } is 15. Hence, I { v 7 } is the ( 24 , 15 , 2 ) group code.□

Theorem 2.7

Let e 1 , e 2 , e 3 be linear idempotents and v 7 be the nonlinear idempotent corresponding to nonlinear character of degree 3. If X i is a subset of order i of the sets { e 1 , e 2 , e 3 } , then

  1. I X 1 { v 7 } is the ( 24 , 14 , 2 ) group code.

  2. I X 2 { v 7 } is the ( 24 , 13 , 2 ) group code.

  3. I X 3 { v 7 } is the ( 24 , 12 , 2 ) group code.

Proof

Assume that I X i { v 7 } denotes the corresponding ideal in any of the possible cases of ( i ) , ( i i ) , and ( i i i ) , where X i is some subset of order i of the set { e 1 , e 2 , e 3 } . We claim that d ( I ) = 2 . For this, consider an ideal I X i v 7 of K [ T ] containing the elements of the form u = r = 1 24 λ r g r such that u x = 0 , for all x X i { v 7 } . This infers that depending upon the subset X i the coefficients in the presentation of u must satisfy suitable equations from equations (2.4)–(2.6) and (2.19)–(2.27), corresponding to u x = 0 , for all x X i Y j .

Clearly, I X i { v 7 } cannot contain any element of weight 1 and hence d ( I X i Y j ) 2 . Furthermore, an element with the smallest weight 2 in I X i { v 7 } is u = g 1 g 2 , as the coefficient of λ 3 and λ 5 in all the equations (2.4)–(2.6) and (2.19)–(2.27) are equal. Thus, we conclude that d ( I X i { v 7 } ) = 2 . Next, for the dimension of the ideal I X i { v 7 } , we observe that all the equations (2.4)–(2.6) and (2.19)–(2.27) are linearly independent, therefore, the dimension of I X i { v 7 } is 24 ( i + 9 ) . This completes the proof.□

We summarize some other results concerning group codes in K [ T ] in the upcoming theorem. These results can be proved by using similar techniques to necessary variations that we have used in our previous results of this section.

Theorem 2.8

Let e 1 , e 2 , e 3 , and v 1 , v 2 , v 3 be linear and nonlinear idempotents corresponding to nonlinear characters of degree 2 in K [ T ] . If X i and Y j are subsets of order i and j of the sets { e 1 , e 2 , e 3 } and { v 1 , v 2 , v 2 } , respectively, then

  1. d ( I X 1 Y 1 ) = 4 and dim ( I X 1 Y 1 ) = 19 .

  2. d ( I X 1 Y 2 ) = 4 and dim ( I X 1 Y 2 ) = 15 .

  3. d ( I X 1 Y 3 ) = 4 and dim ( I X 1 Y 3 ) = 11 .

  4. d ( I X 2 Y 1 ) = 4 and dim ( I X 2 Y 1 ) = 18 .

  5. d ( I X 2 Y 2 ) = 4 and dim ( I X 2 Y 2 ) = 14 .

  6. d ( I X 2 Y 3 ) = 4 and dim ( I X 2 Y 3 ) = 10 .

  7. d ( I X 3 Y 1 ) = 4 and dim ( I X 3 Y 1 ) = 17 .

  8. d ( I X 3 Y 2 ) = 4 and dim ( I X 3 Y 2 ) = 13 .

  9. d ( I X 3 Y 3 ) = 4 and dim ( I X 3 Y 3 ) = 9 .

Acknowledgement

Pankaj gratefully acknowledges the financial assistance of CSIR-HRDG for JRF.

  1. Conflict of interest: Authors state no conflict of interest.

References

[1] Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:623–56. 10.1002/j.1538-7305.1948.tb00917.xSearch in Google Scholar

[2] Anu HG, Denis Wong CK. Group codes defined using extra-special p-group of order p3. Bull Malays Math Sci Soc. 2004;27(2):185–205. Search in Google Scholar

[3] Arora SK, Pruthi M. Minimal codes of prime-power length. Finite Fields Appl. 1997;3:99–113. 10.1006/ffta.1996.0156Search in Google Scholar

[4] Ferraz RA, Milies CP. Idempotents in group algebra and minimal Abelian codes. Finite Fields Appl. 2007;13:382–93. 10.1016/j.ffa.2005.09.007Search in Google Scholar

[5] Macwilliam FJ. Codes and ideals in group algebras. In: Combinatorial mathematics and its applications. Bose RC, Dowling TA, eds. Chapel Hill: Univ. North Carolina Press; 1996. p. 317–28. Search in Google Scholar

[6] Hurley P, Hurley T. Codes from zero-divisors and units in group rings. Int J Inform Coding Theory 2007;1:57–87. 10.1504/IJICOT.2009.024047Search in Google Scholar

[7] Berman SD. Semisimple cyclic and Abelian codes, II. Kibernetika 1967;3:21–30. 10.1007/BF01119999Search in Google Scholar

[8] Denis Wong CK, Ang MH. Group codes defined over dihedral groups of small order. Malays J Math Sci. 2013;7:101–16. Search in Google Scholar

[9] Sehrawat S, Pruthi M. Codes over dihedral groups. J Inform Optim Sci. 2018;39(4):889–901. https://doi.org/10.1080/02522667.2017.1406628. Search in Google Scholar

[10] Passman DS. The algebraic structure of group rings. New York, London, Sydney, Toronto: John Wiley & Sons; 1977. Search in Google Scholar

[11] Pierce RS. Associative algebras. New York: Springer New York; 1980. Search in Google Scholar

[12] James GD, Liebeck MW. Representation and characters of groups. New York: Cambridge; 1993. Search in Google Scholar

[13] Developers, Stein TS, Joyner W, Kohel D, Cremona DJ, Eröcal B. Sage Mathematics Software, The Sage Development Team. 2016, http://www.sagemath.org. Search in Google Scholar

Received: 2022-03-29
Revised: 2022-09-29
Accepted: 2022-10-31
Published Online: 2022-12-13

© 2022 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jmc-2022-0009/html
Scroll to top button