Abstract.
For a semilinear elliptic equation, we prove uniqueness results in determining potentials and semilinear terms from partial Cauchy data on an arbitrary subboundary.
Received: 2012-05-16
Published Online: 2013-02-01
Published in Print: 2013-02-01
© 2013 by Walter de Gruyter Berlin Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Masthead
- Data regularization using Gaussian beams decomposition and sparse norms
- Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology
- The use of statistical tests to calibrate the normal SABR model
- Unique determination of potentials and semilinear terms of semilinear elliptic equations from partial Cauchy data
- Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation
- On a multidimensional integral equation with data supported by low-dimensional analytic manifolds
- Inverse problem for elliptic equation in a Banach space with Bitsadze–Samarsky boundary value conditions
- Certain problems of synchronization theory
Schlagwörter für diesen Artikel
Calderón problem;
Dirichlet-to-Neumann map;
semilinear elliptic equation
Artikel in diesem Heft
- Masthead
- Data regularization using Gaussian beams decomposition and sparse norms
- Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology
- The use of statistical tests to calibrate the normal SABR model
- Unique determination of potentials and semilinear terms of semilinear elliptic equations from partial Cauchy data
- Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation
- On a multidimensional integral equation with data supported by low-dimensional analytic manifolds
- Inverse problem for elliptic equation in a Banach space with Bitsadze–Samarsky boundary value conditions
- Certain problems of synchronization theory