Abstract
In this paper we consider an inversion problem for the Radon transform in three-dimensional space with a weight function of a special form. Under some natural conditions we prove invertibility for the considering problem and find an explicit formula for the inverse of the problem.
References
[1] D. S. Anikonov and Y. A. Kipriyanov, An underdetermined problem of integral geometry for the generalized Radon transform, J. Appl. Ind. Math. 10 (2016), no. 1, 21–28. Suche in Google Scholar
[2] D. S. Anikonov and D. S. Konovalova, An underdetermined problem of integral geometry for a family of curves, Sib. Math. J. 56 (2015), no. 2, 217–230. Suche in Google Scholar
[3] A. K. Begmatov, M. E. Muminov and Z. H. Ochilov, The problem of integral geometry of Volterra type with a weight function of a special type, Math. Stat. 3 (2015), 113–120. Suche in Google Scholar
[4] A. K. Begmatov and Z. K. Ochilov, A problem in integral geometry with a discontinuous weight function, Dokl. Akad. Nauk 429 (2009), no. 3, 295–297. Suche in Google Scholar
[5] A. K. Begmatov and Z. K. Ochilov, D’Alembert mappings for a class of symmetric domains, Dokl. Akad. Nauk 427 (2009), no. 3, 298–299. Suche in Google Scholar
[6]
J. Frikel and E. T. Quinto,
Limited data problems for the generalized Radon transform in
[7] I. Gölgeleyen, An integral geometry problem along geodesics and a computational approach, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 18 (2010), no. 2, 91–112. Suche in Google Scholar
[8] F. O. Goncharov, An iterative inversion of weighted Radon transforms along hyperplanes, Inverse Problems 33 (2017), no. 12, Article ID 124005. Suche in Google Scholar
[9] F. O. Goncharov and R. G. Novikov, An analog of Chang inversion formula for weighted Radon transforms in multidimensions, Eurasian J. Math. Comput. Appl. 4 (2016), no. 2, 23–32. Suche in Google Scholar
[10] F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights, J. Geom. Anal. 28 (2018), no. 4, 3807–3828. Suche in Google Scholar
[11] F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions, Inverse Problems 34 (2018), no. 5, Article ID 054001. Suche in Google Scholar
[12] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 2007. Suche in Google Scholar
[13] S. Helgason, Integral Geometry and Radon Transforms, Springer, New York, 2011. Suche in Google Scholar
[14] A. Homan and H. Zhou, Injectivity and stability for a generic class of generalized Radon transforms, J. Geom. Anal. 27 (2017), no. 2, 1515–1529. Suche in Google Scholar
[15] J. Ilmavirta, On Radon transforms on tori, J. Fourier Anal. Appl. 21 (2015), no. 2, 370–382. Suche in Google Scholar
[16] J. Ilmavirta and K. Mönkkönen, Unique continuation of the normal operator of the x-ray transform and applications in geophysics, Inverse Problems 36 (2020), no. 4, Article ID 045014. Suche in Google Scholar
[17] S. I. Kabanikhin, Inverse and Ill-Posed Problems, Inverse Ill-posed Probl. Ser. 55, Walter de Gruyter, Berlin, 2011. Suche in Google Scholar
[18] M. L. Krasnov, Integral Equations, Izdat. “Nauka”, Moscow, 1975. Suche in Google Scholar
[19] M. M. Lavrent’ev and L. Y. Savel’ev, Operator Theory and Ill-Posed Problems, VSP, Leiden, 2006. Suche in Google Scholar
[20] M. I. Muminov and Z. K. Ochilov, An inversion formula for the weighted Radon transform along family of cones, Nanosyst. Phys. Chem. Math. 14 (2023), 1–6. Suche in Google Scholar
[21] F. Natterer, The Mathematics of Computerized Tomography, Class. Appl. Math. 32, Society for Industrial and Applied Mathematics, Philadelphia, 2001. Suche in Google Scholar
[22] A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton, 1998. Suche in Google Scholar
[23] J. Railo, Fourier analysis of periodic Radon transforms, J. Fourier Anal. Appl. 26 (2020), no. 4, Paper No. 64. Suche in Google Scholar
[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, Academic Press, New York, 1980. Suche in Google Scholar
[25]
T. Reichelt,
A comparison theorem between Radon and Fourier–Laplace transforms for
[26] Z. Ustaoglu, A generalization on the solvability of integral geometry problems along plane curves, Bound. Value Probl. 2013 (2013), Paper No. 202. Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston