Startseite Mathematik Stability estimate and the Tikhonov regularization method for the Kuramoto–Sivashinsky equation backward in time
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability estimate and the Tikhonov regularization method for the Kuramoto–Sivashinsky equation backward in time

  • Nguyen Van Duc ORCID logo EMAIL logo , Nguyen Van Thang und Pham Quy Muoi ORCID logo
Veröffentlicht/Copyright: 11. Februar 2025

Abstract

In this paper, we study the Kuramoto–Sivashinsky (KS) equation backward in time. First, we prove a stability estimate of Hölder type. Then the ill-posed problem is regularized by the Tikhonov regularization method, and an error estimate of Hölder type is obtained. Finally, we apply a physics-informed neural network method to solve the problem numerically.

MSC 2020: 35R30; 35K25; 35K55

Funding statement: This work is funded by Vietnam’s Ministry of Education and Training under grant No. B2024-TDV-12.

References

[1] R. Alonso-Sanz and J. P. Cárdenas, The effect of memory in cellular automata on scale-free networks: The K ¯ = 4 case, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 8, 2477–2486. 10.1142/S0218127408021841Suche in Google Scholar

[2] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39 (1993), no. 3, 930–945. 10.1109/18.256500Suche in Google Scholar

[3] D. J. Benney, Long waves on liquid films, J. Math. Phys. 45 (1966), 150–155. 10.1002/sapm1966451150Suche in Google Scholar

[4] K. Cao and D. Lesnic, Determination of the time-dependent effective ion collision frequency from an integral observation, J. Inverse Ill-Posed Probl. 32 (2024), no. 4, 761–793. 10.1515/jiip-2023-0024Suche in Google Scholar

[5] B. I. Cohen, J. A. Krommes, W. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion 16 (1976), no. 6, 971–992. 10.1088/0029-5515/16/6/009Suche in Google Scholar

[6] P. Colet, K. Wiesenfeld and S. Strogatz, Frequency locking in josephson arrays: Connection with the Kuramoto model, Phys. Rev. E 57 (1998), Article ID 1563. 10.1103/PhysRevE.57.1563Suche in Google Scholar

[7] A. V. Coward, D. T. Papageorgiou and Y. S. Smyrlis, Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto–Sivashinsky equation with time periodic coefficients, Z. Angew. Math. Phys. 46 (1995), no. 1, 1–39. 10.1007/BF00952254Suche in Google Scholar

[8] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), no. 2, 430–455. 10.1006/jcph.2002.6995Suche in Google Scholar

[9] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (1989), no. 4, 303–314. 10.1007/BF02551274Suche in Google Scholar

[10] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press,New York, 1982. Suche in Google Scholar

[11] N. V. Duc and N. V. Thang, Stability results for semi-linear parabolic equations backward in time, Acta Math. Vietnam. 42 (2017), no. 1, 99–111. 10.1007/s40306-015-0163-7Suche in Google Scholar

[12] A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E 53 (1996), no. 4, Article ID 3573. 10.1103/PhysRevE.53.3573Suche in Google Scholar PubMed

[13] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math. 26, Society for Industrial and Applied Mathematics, Philadelphia, 1977. Suche in Google Scholar

[14] J. Gustafsson and B. Protas, Regularization of the backward-in-time Kuramoto–Sivashinsky equation, J. Comput. Appl. Math. 234 (2010), no. 2, 398–406. 10.1016/j.cam.2009.12.032Suche in Google Scholar

[15] P. Guzmán Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto–Sivashinsky type equation, J. Math. Anal. Appl. 408 (2013), no. 1, 275–290. 10.1016/j.jmaa.2013.05.050Suche in Google Scholar

[16] D. N. Hào, N. V. Duc and N. V. Thang, Stability estimates for Burgers-type equations backward in time, J. Inverse Ill-Posed Probl. 23 (2015), no. 1, 41–49. 10.1515/jiip-2013-0050Suche in Google Scholar

[17] D. N. Hào, N. V. Duc and N. V. Thang, Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source, Inverse Problems 34 (2018), no. 5, Article ID 055010. 10.1088/1361-6420/aab8cbSuche in Google Scholar

[18] A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids 28 (1985), no. 1, 37–45. 10.1063/1.865160Suche in Google Scholar

[19] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989), no. 5, 359–366. 10.1016/0893-6080(89)90020-8Suche in Google Scholar

[20] J. M. Hyman, B. Nicolaenko and S. Zaleski, Order and complexity in the Kuramoto–Sivashinsky model of weakly turbulent interfaces, Phys. D 23 (1986), 265–292. 10.1016/0167-2789(86)90136-3Suche in Google Scholar

[21] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University, Cambridge, 2023. Suche in Google Scholar

[22] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University, New York, 2005. 10.1093/acprof:oso/9780198528692.001.0001Suche in Google Scholar

[23] A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005), no. 4, 1214–1233. 10.1137/S1064827502410633Suche in Google Scholar

[24] I. Kukavica, On the behavior of the solutions of the Kuramoto–Sivashinsky equation for negative time, J. Math. Anal. Appl. 166 (1992), no. 2, 601–606. 10.1016/0022-247X(92)90319-9Suche in Google Scholar

[25] I. Kukavica and M. Malcok, Backward behavior of solutions of the Kuramoto–Sivashinsky equation, J. Math. Anal. Appl. 307 (2005), no. 2, 455–464. 10.1016/j.jmaa.2005.01.057Suche in Google Scholar

[26] Y. Kuramoto, Diffusion-induced chaos in reaction systems, Progr. Theoret. Phys. Suppl. 64 (1978), 346–367. 10.1143/PTPS.64.346Suche in Google Scholar

[27] Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach, Progr. Theoret. Phys. 54 (1975), no. 3, 687–699. 10.1143/PTP.54.687Suche in Google Scholar

[28] D. M. Michelson and G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. II. Numerical experiments, Acta Astronaut. 4 (1977), no. 11–12, 1207–1221. 10.1016/0094-5765(77)90097-2Suche in Google Scholar

[29] D. T. Papageorgiou, C. Maldarelli and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A 2 (1990), no. 3, 340–352. 10.1063/1.857784Suche in Google Scholar

[30] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, Berlin, 2008. Suche in Google Scholar

[31] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019), 686–707. 10.1016/j.jcp.2018.10.045Suche in Google Scholar

[32] T. Shlang and G. I. Sivashinsky, Irregular flow of a liquid film down a vertical column, J. Phys. 43 (1982), no. 3, 459–466. 10.1051/jphys:01982004303045900Suche in Google Scholar

[33] G. I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Annu. Rev. Fluid Mech. 15 (1983), no. 1, 179–199. 10.1146/annurev.fl.15.010183.001143Suche in Google Scholar

[34] G. I. Sivashinsky and D. M. Michelson, On irregular wavy flow of a liquid film down a vertical plane, Progr. Theoret. Phys. 63 (1980), no. 6, 2112–2114. 10.1143/PTP.63.2112Suche in Google Scholar

[35] M. Suzuki, Statistical mechanics of non-equilibrium systems. III. Fluctuation and relaxation of quantal macrovariables, Progr. Theoret. Phys. 55 (1976), no. 4, 1064–1081. 10.1143/PTP.55.1064Suche in Google Scholar

[36] W. C. Troy, Phaselocked solutions of the finite size Kuramoto coupled oscillator model, SIAM J. Math. Anal. 49 (2017), no. 3, 1912–1931. 10.1137/16M1055542Suche in Google Scholar

Received: 2024-09-10
Revised: 2025-02-01
Accepted: 2025-02-03
Published Online: 2025-02-11
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2024-0064/pdf?lang=de
Button zum nach oben scrollen