Startseite M. M. Lavrentiev-type systems and reconstructing parameters of viscoelastic media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

M. M. Lavrentiev-type systems and reconstructing parameters of viscoelastic media

  • Mikhail Yu. Kokurin EMAIL logo
Veröffentlicht/Copyright: 24. April 2024

Abstract

We consider a nonlinear coefficient inverse problem of reconstructing the density and the memory matrix of a viscoelastic medium by probing the medium with a family of wave fields excited by moment tensor point sources. A spatially non-overdetermined formulation is investigated, in which the manifolds of point sources and detectors do not coincide and have a total dimension equal to three. The requirements for these manifolds are established to ensure the unique solvability of the studied inverse problem. The results are achieved by reducing the problem to a chain of connected systems of linear integral equations of the M. M. Lavrentiev type.

Award Identifier / Grant number: N24-21-00031

Funding statement: The work was supported by the Russian Science Foundation grant N24-21-00031.

References

[1] A. B. Bakushinskii, A. I. Kozlov and M. Y. Kokurin, On an inverse problem for the three-dimensional wave equation, Comput. Math. Math. Phys. 43 (2003), no. 8, 1149–1158. Suche in Google Scholar

[2] A. B. Bakushinskii and A. S. Leonov, Low-cost numerical method for solving a coefficient inverse problem for the wave equation in three-dimensional space, Comput. Math. Math. Phys. 58 (2018), no. 4, 548–561. 10.1134/S0965542518040073Suche in Google Scholar

[3] A. B. Bakushinskii and A. S. Leonov, Fast solution algorithm for a three-dimensional inverse multifrequency problem of scalar acoustics with data in a cylindrical domain, Comput. Math. Math. Phys. 62 (2022), no. 2, 287–301. 10.1134/S0965542521120046Suche in Google Scholar

[4] A. V. Bitsadze, Some properties of polyharmonic functions, Differ. Equ. 24 (1988), no. 5, 543–548. Suche in Google Scholar

[5] A. L. Bukhgeĭm, G. V. Dyatlov, V. B. Kardakov and E. V. Tantserev, Uniqueness in an inverse problem for a system of equations in elasticity, Sib. Math. J. 45 (2004), no. 4, 618–627. 10.1023/B:SIMJ.0000035828.43530.0cSuche in Google Scholar

[6] R. Burridge and L. Knopoff, Body force equivalents for seismic dislocations, Seism. Res. Lett. 74 (2003), no. 2, 154–162. 10.1785/gssrl.74.2.154Suche in Google Scholar

[7] J. Ciambella, A. Paolone and S. Vidoli, Memory decay rates of viscoelastic solids: Not too slow, but not too fast either, Rheol. Acta, 50 (2011), 661–674. 10.1007/s00397-011-0549-ySuche in Google Scholar

[8] D. K. Durdiev and Z. D. Totieva, Kernel Determination Problems in Hyperbolic Integro-Differential Equations, Infosys Sci. Found. Ser., Springer, Singapore, 2023. 10.1007/978-981-99-2260-4Suche in Google Scholar

[9] I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. I: Properties and Operations, Academic Press, New York, 1964. Suche in Google Scholar

[10] A. Hanyga, Wave propagation in media with singular memory, Math. Comput. Model. 34 (2001), 1399–1421. 10.1016/S0895-7177(01)00137-6Suche in Google Scholar

[11] A. Hanyga and M. Seredynska, Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media – I. Forward problems, Geophys. J. Int. 137 (1999), 319–335. 10.1046/j.1365-246X.1999.00775.xSuche in Google Scholar

[12] W. K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Anal. Math. 60 (1993), 113–133. 10.1007/BF03341969Suche in Google Scholar

[13] B. L. N. Kennett, Seismic Wave Propagation in Stratified Media, Cambridge Monogr. Mech. Appl. Math., Cambridge University, Cambridge, 1983. Suche in Google Scholar

[14] M. V. Klibanov, J. Li and W. Zhang, Linear Lavrent’ev integral equation for the numerical solution of a nonlinear coefficient inverse problem, SIAM J. Appl. Math. 81 (2021), no. 5, 1954–1978. 10.1137/20M1376558Suche in Google Scholar

[15] M. Y. Kokurin, On the completeness of products of harmonic functions and the uniqueness of the solution of the inverse acoustic sounding problem, Math. Notes 104 (2018), no. 5, 689–695. 10.1134/S0001434618110093Suche in Google Scholar

[16] M. Y. Kokurin, Completeness of the asymmetric products of solutions of a second-order elliptic equation and the uniqueness of the solution of an inverse problem for the wave equation, Differ. Equ. 57 (2021), no. 2, 241–250. 10.1134/S0012266121020129Suche in Google Scholar

[17] M. Y. Kokurin, Completeness of asymmetric products of harmonic functions and uniqueness of the solution to the Lavrent’ev equation in inverse wave sounding problems, Izv. Math. 86 (2022), no. 6, 1123–1142. 10.4213/im9253eSuche in Google Scholar

[18] M. Y. Kokurin and V. V. Klyuchev, Uniqueness conditions and numerical approximation of the solution to M. M. Lavrentiev’s integral equation, Numer. Anal. Appl. 15 (2022), 364–378. 10.1134/S1995423922040097Suche in Google Scholar

[19] M. Y. Kokurin and S. K. Paĭmerov, The inverse coefficient problem for a wave equation in a bounded domain, Comput. Math. Math. Phys. 48 (2008), no. 1, 109–120. 10.1134/S0965542508010089Suche in Google Scholar

[20] A. I. Kozlov and M. Y. Kokurin, On Lavrent’ev-type integral equations in coefficient inverse problems for wave equations, Comput. Math. Math. Phys. 61 (2021), no. 9, 1470–1484. 10.1134/S0965542521090128Suche in Google Scholar

[21] S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser, Boston, 2002. 10.1007/978-0-8176-8134-0Suche in Google Scholar

[22] V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭshvili and T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979. 10.1115/1.3153629Suche in Google Scholar

[23] M. M. Lavrent’ev, On an inverse problem for the wave equation, Soviet Math. Dokl. 5 (1964), 970–972. Suche in Google Scholar

[24] M. M. Lavrent’ev, A class of inverse problems for differential equations, Soviet Math. Dokl. 6 (1965), 29–32. Suche in Google Scholar

[25] M. M. Lavrent’ev, V. G. Romanov and S. P. Shishatskii, Ill–Posed Problems of Mathematical Physics and Analysis, American Mathematical Society, Providence, 1986. 10.1090/mmono/064Suche in Google Scholar

[26] A. A. Lokšin, Wave equations with a singular time delay, Dokl. Akad. Nauk SSSR 240 (1978), no. 1, 43–46. Suche in Google Scholar

[27] R. Metzler and T. F. Nonnenmacher, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, Int. J. Plast. 19 (2003), 941–959. 10.1016/S0749-6419(02)00087-6Suche in Google Scholar

[28] J. Pujol and R. B. Herrmann, A student’s guide to point sources in homogeneous media, Seism. Res. Lett. 61 (1990), no. 3–4, 209–224. 10.1785/gssrl.61.3-4.209Suche in Google Scholar

[29] J. N. Rabotnov, Elements of Hereditary Solid Mechanics, Mir, Moscow, 1980. Suche in Google Scholar

[30] A. G. Ramm, Multidimensional Inverse Scattering Problems, John Wiley & Sons, New York, 1992. Suche in Google Scholar

[31] A. Ribodetti and A. Hanyga, Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media – II. Inversion, Geophys. J. Int. 158 (2004), 426–442. 10.1111/j.1365-246X.2004.02337.xSuche in Google Scholar

[32] V. G. Romanov, On the determination of coefficients in viscoelasticity equations, Sib. Math. J. 55 (2014), no. 3, 503–515. 10.1134/S0037446614030124Suche in Google Scholar

[33] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. Suche in Google Scholar

[34] V. G. Yakhno, Inverse Problems for Differential Equations of Elasticity, Nauka, Novosibirsk, 1990. Suche in Google Scholar

Received: 2024-02-04
Accepted: 2024-03-14
Published Online: 2024-04-24
Published in Print: 2024-10-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2024-0009/html
Button zum nach oben scrollen