Abstract
In X-ray CT imaging, there are some cases where the obtained CT images have serious ring artifacts and noise, and these degraded CT images seriously affect the quality of clinical diagnosis. Thus, developing an effective method that can simultaneously suppress ring artifacts and noise is of great importance. Total variation (TV) is a famous prior regularization for image denoising in the image processing field, however, for degraded CT images, it can suppress the noise but fail to reduce the ring artifacts. To address this issue, the
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 62371184
Award Identifier / Grant number: 61801086
Funding statement: This work was partially funded by the National Natural Science Foundation of China (No. 62371184 and No. 61801086), the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0345), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202000534), and the National College Students Innovation and Entrepreneurship Training Program (No. 202110927008). The authors also thank Guangzhou Huaduan Technology co., LTD for providing real data for CT reconstruction.
References
[1] K. An, J. Wang, R. F. Zhou, F. L. Liu and W. W. Wu, Ring-artifacts removal for photon-counting CT, Optics Express 28 (2020), no. 17, 25180–25193. 10.1364/OE.400108Search in Google Scholar PubMed
[2] E. M. A. Anas, S. Y. Lee and M. K. Hasan, Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram, Phys. Med. Biol. 55 (2010), no. 22, 6911–6930. 10.1088/0031-9155/55/22/020Search in Google Scholar PubMed
[3] A. N. M. Ashrafuzzaman, S. Y. Lee and M. K. Hasan, A self-adaptive approach for the detection and correction of stripes in the sinogram: Suppression of ring artifacts in CT imaging, EURASIP J. Adv. Signal Process. 2011 (2011), no. 1, 1–13. 10.1155/2011/183547Search in Google Scholar
[4] T. Goldstein, C. Studer and R. Baraniuk, A field guide to forward-backward splitting with a FASTA implementation, preprint (2014), https://arxiv.org/abs/1411.3406. Search in Google Scholar
[5] M. Hopf and T. Ertl, Hardware accelerated wavelet transformations, Data Visualization 2000, Springer, Vienna (2000), 93–104. 10.1007/978-3-7091-6783-0_10Search in Google Scholar
[6] Q. Huo, J. Li, Y. Lu and Z. Yan, Removing ring artifacts in CBCT images via L0 smoothing, Int. J. Imaging Syst. & Technol. 26 (2016), no. 4, 284–294. 10.1002/ima.22200Search in Google Scholar
[7] D. Jha, H. O. Sørensen, S. Dobberschütz, R. Feidenhans’l and S. L. S. Stipp, Adaptive center determination for effective suppression of ring artifacts in tomography images, Appl. Phys. Lett. 105 (2014), Article ID 143107. 10.1063/1.4897441Search in Google Scholar
[8] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988. Search in Google Scholar
[9] M. Kamrul Hasan, F. Sadi and S. Y. Lee, Removal of ring artifacts in micro-CT imaging using iterative morphological filters, Signal Image Video Process. 6 (2012), no. 1, 41–53. 10.1007/s11760-010-0170-zSearch in Google Scholar
[10] Y. Kim, J. Baek and D. Hwang, Ring artifact correction using detector line-ratios in computed tomography, Optics Express 22 (2014), no. 11, Article ID 13380. 10.1364/OE.22.013380Search in Google Scholar PubMed
[11] Y. Makinen, S. Marchesini and A. Foi, Ring artifact reduction via multiscale nonlocal collaborative filtering of spatially correlated noise, J. Synchrotron Radiation 28 (2021), 876–888. 10.1107/S1600577521001910Search in Google Scholar PubMed PubMed Central
[12] J. Michálek, Total variation-based reduction of streak artifacts, ring artifacts and noise in 3d reconstruction from optical projection tomography, Microscopy Microanal. 21 (2015), no. 6, 1602–1615. 10.1017/S1431927615015226Search in Google Scholar PubMed
[13] B. Münch, P. Trtik, F. Marone and M. Stampanoni, Stripe and ring artifact removal with combined wavelet–Fourier filtering, Optics Express 17 (2009), no. 10, 8567–8591. 10.1364/OE.17.008567Search in Google Scholar PubMed
[14] P. Schoenhagen, S. S. Halliburton, A. E. Stillman, S. A. Kuzmiak, S. E. Nissen, E. M. Tuzcu and R. D. White, Noninvasive imaging of coronary arteries: Current and future role of multi-detector row CT, Radiology 232 (2004), 7–17. 10.1148/radiol.2321021803Search in Google Scholar PubMed
[15] J. Sijbers and A. Postnov, Reduction of ring artefacts in high-resolution micro-CT reconstructions, Phys. Med. Biol. 49 (2004), no. 14, N247–N253. 10.1088/0031-9155/49/14/N06Search in Google Scholar PubMed
[16] T. T. Wong, C. S. Leung, P. A. Heng and J. Wang, Discrete wavelet transform on consumer-level graphics hardware, IEEE Trans. Multimedia 9 (2007), no. 3, 668–673. 10.1109/TMM.2006.887994Search in Google Scholar
[17] L. Xu, C. Lu, Y. Xu and J. Jia, Image smoothing via L0 gradient minimization, ACM Trans. Graphics 30 (2011), no. 6, 1–12. 10.1145/2070781.2024208Search in Google Scholar
[18] L. Yan, T. Wu, S. Zhong and Q. Zhang, A variation-based ring artifact correction method with sparse constraint for flat-detector CT, Phys. Med. Biol. 61 (2016), no. 3, 1278–1292. 10.1088/0031-9155/61/3/1278Search in Google Scholar PubMed
[19] C. Y. Yuan, Z. J. Chen, H. L. Qi, S. Y. Wu, B. Li, J. H. Ma, L. H. Zhou and Y. Xu, A practical computed tomography image ring artifact correction method for large-scale dead pixels of X-ray detector, J. Med. Imag. Health Inform. 8 (2018), no. 5, 950–958. 10.1166/jmihi.2018.2406Search in Google Scholar
[20] S. Yao, Y. Zong, J. Fan, Z. Sun, J. Zhang and H. Jiang, Synchrotron X-ray microtomography with improved image quality by ring artifacts correction for structural analysis of insects, Microscopy Microanal. 23 (2017), no. 5, 938–944. 10.1017/S1431927617012387Search in Google Scholar PubMed
[21] S. Zhao, J. Li and Q. Huo, Removing ring artifacts in cbct images via generative adversarial network, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE Press, Piscataway (2018), 1055–1059. 10.1109/ICASSP.2018.8462316Search in Google Scholar
[22] L. Zhu, Y. Zhou, D. Zhang, D. Wang, H. Wang and X. Wang, Parallel multi-level 2D-DWT on CUDA GPUs and its application in ring artifact removal, Concurrency Comput Practice Exp. 27 (2015), no. 17, 5188–5202. 10.1002/cpe.3559Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Boundary determination for hybrid imaging from a single measurement
- The inverse problem of heat conduction in the case of non-uniqueness: A functional identification approach
- Well-posedness and Tikhonov regularization of an inverse source problem for a parabolic equation with an integral constraint
- CT image restoration method via total variation and L 0 smoothing filter
- A weakly inhomogeneous vibrating membrane and the solotone effect in two dimensions
- A physics-inspired neural network for short-wave radiation parameterization
- Inverse problem for Sturm–Liouville operator with complex-valued weight and eigenparameter dependent boundary conditions
- The high-order estimate of the entire function associated with inverse Sturm–Liouville problems
- Inverse spectral problem for differential pencils with a frozen argument
- Curious ill-posedness phenomena in the composition of non-compact linear operators in Hilbert spaces
- M. M. Lavrentiev-type systems and reconstructing parameters of viscoelastic media
- Application of locally regularized extremal shift to the problem of realization of a prescribed motion
- The overdetermined Cauchy problem for the hyperbolic Gellerstedt equation
- The group behavior analysis of the high-frequency traders based on Mean Field Games approach
Articles in the same Issue
- Frontmatter
- Boundary determination for hybrid imaging from a single measurement
- The inverse problem of heat conduction in the case of non-uniqueness: A functional identification approach
- Well-posedness and Tikhonov regularization of an inverse source problem for a parabolic equation with an integral constraint
- CT image restoration method via total variation and L 0 smoothing filter
- A weakly inhomogeneous vibrating membrane and the solotone effect in two dimensions
- A physics-inspired neural network for short-wave radiation parameterization
- Inverse problem for Sturm–Liouville operator with complex-valued weight and eigenparameter dependent boundary conditions
- The high-order estimate of the entire function associated with inverse Sturm–Liouville problems
- Inverse spectral problem for differential pencils with a frozen argument
- Curious ill-posedness phenomena in the composition of non-compact linear operators in Hilbert spaces
- M. M. Lavrentiev-type systems and reconstructing parameters of viscoelastic media
- Application of locally regularized extremal shift to the problem of realization of a prescribed motion
- The overdetermined Cauchy problem for the hyperbolic Gellerstedt equation
- The group behavior analysis of the high-frequency traders based on Mean Field Games approach