Startseite An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates

  • Marion Darbas , Mohamadou Malal Diallo , Abdellatif El Badia EMAIL logo und Stephanie Lohrengel
Veröffentlicht/Copyright: 15. Februar 2019

Abstract

In this paper we present some aspects of an inverse source problem in an elliptic equation with varying coefficients, using partial Dirichlet boundary measurements. A uniqueness result is established for dipolar sources including their number. Additionally, assuming the number of dipoles known, a stability result is obtained and an efficient numerical identification method is developed. Finally, numerical experiments illustrate the effectiveness of the approach and a discussion is given on electroencephalography (EEG) in neonates.

Funding statement: The present work has been realized as part of both the MIFAC and BBEEG projects receiving financial supports from the region Picardie (now Hauts-de-France) and the CNRS (Interdisciplinary mission), respectively.

A Proof of Lemma 3

Let φn=(𝒒kn,Skn)1km(3×Ω1)m and ψn=(𝒑kn,Tkn)1km6m such that limn(φn,ψn)=(φ,ψ) with φ=(𝒒k,Sk)1km and ψ=(𝒑k,Tk)1km. Without loss of generality, we can assume that for any k, the sequence (Skn)n belongs to 𝒱k (this is at least true for sufficiently large values of n). Hence,

σ1(Skn)=σ1(Sk)=ck.

Then 𝒯(φn,ψn)=u|Γ*1,n where u1,n is the solution of the problem

(A.1){-(σu1,n)=F1,nin Ω,σ𝒏u1,n=0on Γ,

with the source term

(A.2)F1,n=k=1m𝒑knδSkn-𝒒knH(δSkn)Tkn.

In the same way, 𝒯(φ,ψ)=u|Γ*1, where u1 is the solution to (4.2) with source term

F1=k=1m𝒑kδSk-𝒒kH(δSk)Tk.

For better reading, let

Fk1,n=𝒑knδSkn-𝒒knH(δSkn)Tkn

and

Fk1=𝒑kδSk-𝒒kH(δSk)Tk

for 1km, and introduce vk1,n, the solution in 3 of the Poisson equation

-ckΔvk1,n=Fk1,n-Fk1.

The right-hand side of the above equation tends to 0 in the distributional sense since

limn(𝒒kn,Skn)=(𝒒k,Sk)andlimn(𝒑kn,Tkn)=(𝒑k,Tk).

As before, vk1,n is obtained by convolution with the fundamental solution of the Laplace equation, and it follows that vk1,n as well as its derivatives converge to 0 outside 𝒱k. More precisely, we have

vk1,n=(𝒑k,nG(𝒙-Sk,n)-𝒑kG(𝒙-Sk))-(𝒒k,nH(G(𝒙-Sk,n))Tk,n-𝒒kH(G(𝒙-Sk))Tk).

Now, Taylor expansion of G (resp. H(G)) at the point 𝒙-Sk shows that G(𝒙-Sk,n)-G(𝒙-Sk) (resp. H(G(𝒙-Sk,n))-H(G(𝒙-Sk))) is of order 𝒪(Sk,n-Sk) since G(-Sk) and all its derivatives are regular and bounded outside 𝒱k. Taking into account that (𝒒k,n,𝒑k,n) converges to (𝒒,𝒑), we get the following estimates:

(A.3)limnvk1,nH1(Ω𝒱k)=limn𝒏vk1,nL2(Γ)=limnvk1,nL2(Γ)=0.

We have to prove that

limnu1,n-u1H12(Γ*)=0.

To this end, we decompose v1,n=u1,n-u1 into a singular and a variational part according to Section 2.1,

v1,n=k=1mvk1,n+w1,n,

where the auxiliary function w1,n is the unique solution in the vector space V of the problem

a(w1,n,v)=k=1mΩ(ck-σ)vk1,nvd𝒙-k=1mΓcknvk1,nvdsfor all vV.

Poincaré–Friedrichs’ inequality and the continuity of the linear form yield the following estimate:

w1,nH1(Ω)k=1mvk1,nL2(Ω𝒱k)+𝒏vk1,nL2(Γ).

Together with estimates (A.3) and the continuity of the trace application, this implies limnv|Γ*1,n=0 in H12(Γ*) which shows the continuity of the operator 𝒯.

Acknowledgements

The authors would like to thank the anonymous referees for useful suggestions and remarks.

References

[1] H. Ammari, Mathematical Modeling in Biomedical Imaging. I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Mathematical Biosciences Subseries, Lecture Notes in Math. 1983, Springer, Berlin, 2009. 10.1007/978-3-642-03444-2Suche in Google Scholar

[2] H. Azizollahi, A. Aarabi and F. Wallois, Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates, Human Brain Mapping 37 (2016), no. 10, 3604–3622. 10.1002/hbm.23263Suche in Google Scholar PubMed PubMed Central

[3] H. Azizollahi, M. Darbas, M. M. Diallo, A. El Badia and S. Lohrengel, EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity, Math. Biosci. Eng. 15 (2018), no. 4, 905–932. 10.3934/mbe.2018041Suche in Google Scholar PubMed

[4] M. Clerc, J. Leblond, J.-P. Marmorat and T. Papadopoulo, Source localization using rational approximation on plane sections, Inverse Problems 28 (2012), no. 5, Article ID 055018. 10.1088/0266-5611/28/5/055018Suche in Google Scholar

[5] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Appl. Math. Sci. 93, Springer, Berlin, 1998. 10.1007/978-3-662-03537-5Suche in Google Scholar

[6] M. Darbas and S. Lohrengel, Review on mathematical modelling of electroencephalography (EEG), Jahresber. Dtsch. Math.-Ver. (2018), 10.1365/s13291-018-0183-z. 10.1365/s13291-018-0183-zSuche in Google Scholar

[7] M. M. Diallo, Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né, Thèse de doctorat, Université de Picardie Jules Verne, France, 2017. Suche in Google Scholar

[8] A. El Badia and A. El Hajj, Stability estimates for an inverse source problem of Helmholtz’s equation from single Cauchy data at a fixed frequency, Inverse Problems 29 (2013), no. 12, Article ID 125008. 10.1088/0266-5611/29/12/125008Suche in Google Scholar

[9] A. El Badia and M. Farah, Identification of dipole sources in an elliptic equation from boundary measurements: Application to the inverse EEG problem, J. Inverse Ill-Posed Probl. 14 (2006), no. 4, 331–353. 10.1515/156939406777571012Suche in Google Scholar

[10] A. El Badia and M. Farah, A stable recovering of dipole sources from partial boundary measurements, Inverse Problems 26 (2010), no. 11, Article ID 115006. 10.1088/0266-5611/26/11/115006Suche in Google Scholar

[11] A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems 16 (2000), no. 3, 651–663. 10.1088/0266-5611/16/3/308Suche in Google Scholar

[12] M. Farah, Problèmes inverses de sources et lien avec l’Electro-encéphalo-graphie, Thèse de doctorat, Université de Technologie de Compiègne, [rance, 2007. Suche in Google Scholar

[13] P. Gargiulo, P. Belfiore, E. A. Friogeirsson, S. Vanhalato and C. Ramon, The effect of fontanel on scalp EEG potentials in the neonate, Clin. Neurophysiol. 126 (2014), 1703–1710. 10.1016/j.clinph.2014.12.002Suche in Google Scholar PubMed

[14] P. Grisvard, Singularities in Boundary Value Problems, Rech. Math. Appl. 22, Masson, Paris, 1992. Suche in Google Scholar

[15] M. Hämäläinen, R. Hari, J. Ilmoniemi, J. Knuutila and O. V. Lounasmaa, Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Modern Phys. 65 (1993), 413–497. 10.1103/RevModPhys.65.413Suche in Google Scholar

[16] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFEM++ Manual, (2014). Suche in Google Scholar

[17] M. Kern, Problèmes inverses, École supérieure d’ingénieurs Léonard De Vinci, 2002. Suche in Google Scholar

[18] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed., Appl. Math. Sci. 120, Springer, New York, 2011. 10.1007/978-1-4419-8474-6Suche in Google Scholar

[19] R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987), no. 6, 745–777. 10.1002/cpa.3160400605Suche in Google Scholar

[20] R. Kress, Linear Integral Equations, 2nd ed., Appl. Math. Sci. 82, Springer, New York, 1999. 10.1007/978-1-4612-0559-3Suche in Google Scholar

[21] S. Lew, D. D. Silva, M. Choe, P. Ellen Grant, Y. Okada, C. H. Wolters and M. S. Hämäläinen, Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model, Neuroimage 76 (2013), 282–293. 10.1016/j.neuroimage.2013.03.017Suche in Google Scholar PubMed PubMed Central

[22] T. Nara and S. Ando, A projective method for an inverse source problem of the Poisson equation, Inverse Problems 19 (2003), no. 2, 355–369. 10.1088/0266-5611/19/2/307Suche in Google Scholar

[23] M. Odabaee, A. Tokariev, S. Layeghy, M. Mesbah, P. B. Colditz, C. Ramon and S. Vanhatalo, Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models, NeuroImage 96 (2014), 73–80. 10.1016/j.neuroimage.2014.04.007Suche in Google Scholar PubMed

[24] C. Papageorgakis, Modèles de conductivité patient-spécifiques: caractérisation de l’os du crâne, PhD Thesis, INRIA Sophia, Université Côte d’Azur, 2017. Suche in Google Scholar

[25] S. Pursiainen, EEG/MEG forward simulation through h- and p-type finite elements, J. Phys. Conf. Ser. 124 (2008), Article ID 012041. 10.1088/1742-6596/124/1/012041Suche in Google Scholar

[26] N. Roche-Labarbe, A. Aarabi, G. Kongolo, C. Gondry-Jouet, M. Dümpelmann, R. Grebe and F. Wallois, High-resolution electroencephalography and source localization in neonates, Human Brain Mapping 29 (2008), 167–76. 10.1002/hbm.20376Suche in Google Scholar PubMed PubMed Central

[27] M. Salo, Unique continuation for elliptic equations, notes (2014). Suche in Google Scholar

[28] M. Schneider, A multistage process for computing virtual dipole sources of EEG discharges from surface information, IEEE Trans. Biomed. Eng. 19 (1972), 1–19. 10.1109/TBME.1972.324152Suche in Google Scholar

[29] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Suche in Google Scholar

[30] J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging, Wiley, New York, 2012. 10.1002/9781118478141Suche in Google Scholar

[31] J. Vorwerk, C. Engwer, S. Pursiainen and C. H. Wolters, A mixed finite element method to solve the EEG forward problem, IEEE Trans. Med.Imag. 36 (2017), no. 4, 930–941. 10.1109/TMI.2016.2624634Suche in Google Scholar PubMed

[32] C. H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck and W. Hackbusch, Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 24–45. 10.1137/060659053Suche in Google Scholar

Received: 2017-12-22
Revised: 2019-01-28
Accepted: 2019-01-29
Published Online: 2019-02-15
Published in Print: 2019-04-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2017-0120/html
Button zum nach oben scrollen