An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates
Abstract
In this paper we present some aspects of an inverse source problem in an elliptic equation with varying coefficients, using partial Dirichlet boundary measurements. A uniqueness result is established for dipolar sources including their number. Additionally, assuming the number of dipoles known, a stability result is obtained and an efficient numerical identification method is developed. Finally, numerical experiments illustrate the effectiveness of the approach and a discussion is given on electroencephalography (EEG) in neonates.
Funding statement: The present work has been realized as part of both the MIFAC and BBEEG projects receiving financial supports from the region Picardie (now Hauts-de-France) and the CNRS (Interdisciplinary mission), respectively.
A Proof of Lemma 3
Let
Then
with the source term
In the same way,
For better reading, let
and
for
The right-hand side of the above equation tends to 0 in the distributional sense since
As before,
Now, Taylor expansion of
We have to prove that
To this end, we decompose
where the auxiliary function
Poincaré–Friedrichs’ inequality and the continuity of the linear form yield the following estimate:
Together with estimates (A.3) and the continuity of the trace application,
this implies
Acknowledgements
The authors would like to thank the anonymous referees for useful suggestions and remarks.
References
[1] H. Ammari, Mathematical Modeling in Biomedical Imaging. I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Mathematical Biosciences Subseries, Lecture Notes in Math. 1983, Springer, Berlin, 2009. 10.1007/978-3-642-03444-2Suche in Google Scholar
[2] H. Azizollahi, A. Aarabi and F. Wallois, Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates, Human Brain Mapping 37 (2016), no. 10, 3604–3622. 10.1002/hbm.23263Suche in Google Scholar PubMed PubMed Central
[3] H. Azizollahi, M. Darbas, M. M. Diallo, A. El Badia and S. Lohrengel, EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity, Math. Biosci. Eng. 15 (2018), no. 4, 905–932. 10.3934/mbe.2018041Suche in Google Scholar PubMed
[4] M. Clerc, J. Leblond, J.-P. Marmorat and T. Papadopoulo, Source localization using rational approximation on plane sections, Inverse Problems 28 (2012), no. 5, Article ID 055018. 10.1088/0266-5611/28/5/055018Suche in Google Scholar
[5] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Appl. Math. Sci. 93, Springer, Berlin, 1998. 10.1007/978-3-662-03537-5Suche in Google Scholar
[6] M. Darbas and S. Lohrengel, Review on mathematical modelling of electroencephalography (EEG), Jahresber. Dtsch. Math.-Ver. (2018), 10.1365/s13291-018-0183-z. 10.1365/s13291-018-0183-zSuche in Google Scholar
[7] M. M. Diallo, Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né, Thèse de doctorat, Université de Picardie Jules Verne, France, 2017. Suche in Google Scholar
[8] A. El Badia and A. El Hajj, Stability estimates for an inverse source problem of Helmholtz’s equation from single Cauchy data at a fixed frequency, Inverse Problems 29 (2013), no. 12, Article ID 125008. 10.1088/0266-5611/29/12/125008Suche in Google Scholar
[9] A. El Badia and M. Farah, Identification of dipole sources in an elliptic equation from boundary measurements: Application to the inverse EEG problem, J. Inverse Ill-Posed Probl. 14 (2006), no. 4, 331–353. 10.1515/156939406777571012Suche in Google Scholar
[10] A. El Badia and M. Farah, A stable recovering of dipole sources from partial boundary measurements, Inverse Problems 26 (2010), no. 11, Article ID 115006. 10.1088/0266-5611/26/11/115006Suche in Google Scholar
[11] A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems 16 (2000), no. 3, 651–663. 10.1088/0266-5611/16/3/308Suche in Google Scholar
[12] M. Farah, Problèmes inverses de sources et lien avec l’Electro-encéphalo-graphie, Thèse de doctorat, Université de Technologie de Compiègne, [rance, 2007. Suche in Google Scholar
[13] P. Gargiulo, P. Belfiore, E. A. Friogeirsson, S. Vanhalato and C. Ramon, The effect of fontanel on scalp EEG potentials in the neonate, Clin. Neurophysiol. 126 (2014), 1703–1710. 10.1016/j.clinph.2014.12.002Suche in Google Scholar PubMed
[14] P. Grisvard, Singularities in Boundary Value Problems, Rech. Math. Appl. 22, Masson, Paris, 1992. Suche in Google Scholar
[15] M. Hämäläinen, R. Hari, J. Ilmoniemi, J. Knuutila and O. V. Lounasmaa, Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Modern Phys. 65 (1993), 413–497. 10.1103/RevModPhys.65.413Suche in Google Scholar
[16] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFEM++ Manual, (2014). Suche in Google Scholar
[17] M. Kern, Problèmes inverses, École supérieure d’ingénieurs Léonard De Vinci, 2002. Suche in Google Scholar
[18] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed., Appl. Math. Sci. 120, Springer, New York, 2011. 10.1007/978-1-4419-8474-6Suche in Google Scholar
[19] R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987), no. 6, 745–777. 10.1002/cpa.3160400605Suche in Google Scholar
[20] R. Kress, Linear Integral Equations, 2nd ed., Appl. Math. Sci. 82, Springer, New York, 1999. 10.1007/978-1-4612-0559-3Suche in Google Scholar
[21] S. Lew, D. D. Silva, M. Choe, P. Ellen Grant, Y. Okada, C. H. Wolters and M. S. Hämäläinen, Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model, Neuroimage 76 (2013), 282–293. 10.1016/j.neuroimage.2013.03.017Suche in Google Scholar PubMed PubMed Central
[22] T. Nara and S. Ando, A projective method for an inverse source problem of the Poisson equation, Inverse Problems 19 (2003), no. 2, 355–369. 10.1088/0266-5611/19/2/307Suche in Google Scholar
[23] M. Odabaee, A. Tokariev, S. Layeghy, M. Mesbah, P. B. Colditz, C. Ramon and S. Vanhatalo, Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models, NeuroImage 96 (2014), 73–80. 10.1016/j.neuroimage.2014.04.007Suche in Google Scholar PubMed
[24] C. Papageorgakis, Modèles de conductivité patient-spécifiques: caractérisation de l’os du crâne, PhD Thesis, INRIA Sophia, Université Côte d’Azur, 2017. Suche in Google Scholar
[25] S. Pursiainen, EEG/MEG forward simulation through h- and p-type finite elements, J. Phys. Conf. Ser. 124 (2008), Article ID 012041. 10.1088/1742-6596/124/1/012041Suche in Google Scholar
[26] N. Roche-Labarbe, A. Aarabi, G. Kongolo, C. Gondry-Jouet, M. Dümpelmann, R. Grebe and F. Wallois, High-resolution electroencephalography and source localization in neonates, Human Brain Mapping 29 (2008), 167–76. 10.1002/hbm.20376Suche in Google Scholar PubMed PubMed Central
[27] M. Salo, Unique continuation for elliptic equations, notes (2014). Suche in Google Scholar
[28] M. Schneider, A multistage process for computing virtual dipole sources of EEG discharges from surface information, IEEE Trans. Biomed. Eng. 19 (1972), 1–19. 10.1109/TBME.1972.324152Suche in Google Scholar
[29] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Suche in Google Scholar
[30] J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging, Wiley, New York, 2012. 10.1002/9781118478141Suche in Google Scholar
[31] J. Vorwerk, C. Engwer, S. Pursiainen and C. H. Wolters, A mixed finite element method to solve the EEG forward problem, IEEE Trans. Med.Imag. 36 (2017), no. 4, 930–941. 10.1109/TMI.2016.2624634Suche in Google Scholar PubMed
[32] C. H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck and W. Hackbusch, Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 24–45. 10.1137/060659053Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- An inverse problem for the integro-differential Dirac system with partial information given on the convolution kernel
- Magnetoencephalography inverse problem in the spheroid geometry
- Space of images of the mixed Riesz hyperbolic B-potential and analytic continuation
- A gradient-based approach for identification of the zeroth-order coefficient 𝑝(𝑥) in the parabolic equation 𝑢𝑡 = (𝑘(𝑥)𝑢𝑥)𝑥 − 𝑝(𝑥)𝑢 from Dirichlet-type measured output
- Convergence of Levenberg–Marquardt method for the inverse problem with an interior measurement
- Inverse problem for one-dimensional wave equation with matrix potential
- Cauchy difference priors for edge-preserving Bayesian inversion
- On an inverse problem in photoacoustics
- An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates
- Penalty-based smoothness conditions in convex variational regularization
Artikel in diesem Heft
- Frontmatter
- An inverse problem for the integro-differential Dirac system with partial information given on the convolution kernel
- Magnetoencephalography inverse problem in the spheroid geometry
- Space of images of the mixed Riesz hyperbolic B-potential and analytic continuation
- A gradient-based approach for identification of the zeroth-order coefficient 𝑝(𝑥) in the parabolic equation 𝑢𝑡 = (𝑘(𝑥)𝑢𝑥)𝑥 − 𝑝(𝑥)𝑢 from Dirichlet-type measured output
- Convergence of Levenberg–Marquardt method for the inverse problem with an interior measurement
- Inverse problem for one-dimensional wave equation with matrix potential
- Cauchy difference priors for edge-preserving Bayesian inversion
- On an inverse problem in photoacoustics
- An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates
- Penalty-based smoothness conditions in convex variational regularization