Startseite Some generalizations for Landweber iteration for nonlinear ill-posed problems in Hilbert scales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some generalizations for Landweber iteration for nonlinear ill-posed problems in Hilbert scales

  • Andreas Neubauer EMAIL logo
Veröffentlicht/Copyright: 9. Dezember 2015

Abstract

In this paper we derive convergence rates results for Landweber iteration in Hilbert scales. The assumptions that are necessary to prove these results are less restrictive than the ones given in an earlier paper. The relaxed conditions enlarge the range of applicability to a much wider class of nonlinear problems. The theory is applied to nonlinear Hammerstein operators.

References

[1] Egger H. and Neubauer A., Preconditioning Landweber iteration in Hilbert scales, Numer. Math. 101 (2005), 643–662. 10.1007/s00211-005-0622-5Suche in Google Scholar

[2] Engl H. W., Hanke M. and Neubauer A., Regularization of Inverse Problems, Kluwer, Dordrecht, 1996. 10.1007/978-94-009-1740-8Suche in Google Scholar

[3] Hanke M., Neubauer A. and Scherzer O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), 21–37. 10.1007/s002110050158Suche in Google Scholar

[4] Kaltenbacher B., Neubauer A. and Scherzer O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Ser. Comput. Appl. Math. 6, De Gruyter, Berlin, 2008. 10.1515/9783110208276Suche in Google Scholar

[5] Krein S. G. and Petunin J. I., Scales of Banach spaces, Russian Math. Surveys 21 (1966), 85–160. 10.1090/mmono/054/03Suche in Google Scholar

[6] Lions J. L. and Magenes E., Non-Homogeneous Boundary Value Problems and Applications I, Springer, Berlin, 1972. 10.1007/978-3-642-65161-8Suche in Google Scholar

[7] Neubauer A., When do Sobolev spaces form a Hilbert scale?, Proc. Amer. Math. Soc. 103 (1988), 557–562. 10.1090/S0002-9939-1988-0943084-9Suche in Google Scholar

[8] Neubauer A., On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math. 85 (2000), 309–328. 10.1007/s002110050487Suche in Google Scholar

Received: 2015-9-10
Accepted: 2015-11-16
Published Online: 2015-12-9
Published in Print: 2016-8-1

© 2016 by De Gruyter

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2015-0086/html
Button zum nach oben scrollen