Startseite Bounded automorphisms and quasi-isometries of finitely generated groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bounded automorphisms and quasi-isometries of finitely generated groups

  • Aniruddha C. Naolekar und Parameswaran Sankaran
Veröffentlicht/Copyright: 18. November 2005
Journal of Group Theory
Aus der Zeitschrift Band 8 Heft 4

Abstract

Let Γ be a finitely generated infinite group. Denote by K (Γ ) the FC-centre of Γ, i.e. the subgroup of all elements of Γ having only finitely many conjugates in Γ. Let QI(Γ ) denote the group of quasi-isometries of Γ with respect to a word metric. We prove that the natural homomorphism θΓ : Aut(Γ ) → QI(Γ ) is a monomorphism only if K (Γ ) equals the centre Z (Γ ) of Γ. The converse holds if K (Γ ) = Z (Γ ) is torsion-free. When K (Γ ) is finite we show that  is a monomorphism where  = Γ| K (Γ ). We apply this criterion to a number of classes of groups arising in combinatorial and geometric group theory.

:
Published Online: 2005-11-18
Published in Print: 2005-07-20

Walter de Gruyter GmbH & Co. KG

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth.2005.8.4.515/pdf?lang=de
Button zum nach oben scrollen