Startseite Tri-extraspecial groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tri-extraspecial groups

  • A. A. Ivanov und S. Shpectorov
Veröffentlicht/Copyright: 18. November 2005
Journal of Group Theory
Aus der Zeitschrift Band 8 Heft 4

Abstract

We classify the groups which are certain split extensions of special 2-groups of the form 23+3m, m ≥ 1, by the group L3(2). These groups behave very much like extraspecial 2-groups and we call them tri-extraspecial groups. A tri-extraspecial group of this form exists if and only if m is a positive even integer, and for every n ≥ 1 there are exactly two tri-extraspecial groups of the form 23+6nL3(2). We denote these groups by T+(2n) and T(2n). Let ε be + or −. Then the isomorphism type of Q (2n) ≔ O2(ε(2n)) is independent of ε. The automorphism group Aε(2n) of ε(2n) is a non-split extension of Q (2n) by the direct product L3 (2) × S2n (2) × 2. The group Aε(2n) permutes transitively the conjugacy classes of L3 (2)-complements to Q (2n) in ε(2n). If ε(2n) is the stabilizer in Aε(2n) of one of these classes of complements, then ε(2n) is a split extension of (2n) by L3 (2) × (2). The group ε(2n) is isomorphic to the stabilizer in the orthogonal group (2) of a 3-dimensional totally singular subspace in the natural module. Even more remarkably, a subgroup of A+(4) which is a non-split extension of (4) by L3 (2) × S5 is the so-called pentad subgroup in the fourth sporadic simple group of Janko J4, while a subgroup of index 2 in A(4) which is a non-split extension of Q (4) by L3 (2) × S6 ≅ L3 (2) × S4(2) is a maximal 2-local subgroup in the largest Fischer 3-transposition group Fi24. The two sporadic examples were the primary motivation for our interest in tri-extraspecial groups.

:
Published Online: 2005-11-18
Published in Print: 2005-07-20

Walter de Gruyter GmbH & Co. KG

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth.2005.8.4.395/pdf?lang=de
Button zum nach oben scrollen