Startseite Some small Sylow numbers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some small Sylow numbers

  • Wolfgang Knapp und Peter Schmid EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2025
Journal of Group Theory
Aus der Zeitschrift Journal of Group Theory

Abstract

Given a prime 𝑝 and a finite group 𝐺, let s p ( G ) denote the number of Sylow 𝑝-subgroups of 𝐺. Suppose that this Sylow number is small in terms of the prime 𝑝. What can be said, then, about the structure of 𝐺, the order of a Sylow 𝑝-subgroup, or the union of the Sylow 𝑝-subgroups? In answering these questions, it is appropriate to assume that 𝐺 is generated by its Sylow 𝑝-subgroups and that the intersection of the normalizers of the Sylow 𝑝-subgroups is trivial (which does not alter s p ( G ) ). If 𝐺 is such a 𝑝-reduced group, it is a transitive permutation group of degree s p ( G ) . In this paper, we shall treat cases where s p ( G ) < 1 + 3 p + 2 p 2 , and we shall determine the structure of 𝐺 when s p ( G ) 1 + p + p 2 .

  1. Communicated by: Andrea Lucchini

References

[1] M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), no. 1, 44–80. 10.1016/0021-8693(85)90145-0Suche in Google Scholar

[2] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57–79. 10.2307/1969065Suche in Google Scholar

[3] R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math. 28, John Wiley & Sons, London, 1972. Suche in Google Scholar

[4] R. W. Carter, Finite Groups of Lie Type, Pure Appl. Math. (New York), John Wiley & Sons, New York, 1985. Suche in Google Scholar

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, A T L A S of Finite Groups, Oxford University, Eynsham, 1985. Suche in Google Scholar

[6] P. Fong and G. M. Seitz, Groups with a ( B , N ) -pair of rank 2. I, Invent. Math. 21 (1973), 1–57. 10.1007/BF01389689Suche in Google Scholar

[7] P. Fong and G. M. Seitz, Groups with a ( B , N ) -pair of rank 2. II, Invent. Math. 24 (1974), 191–239. 10.1007/BF01390051Suche in Google Scholar

[8] G. Frobenius, Über Gruppen des Grades 𝑝 und p + 1 , Sitz.-Ber. Königl. Preuss. Akad. Berlin (2002), 351–369. Suche in Google Scholar

[9] P. Gheri, On the number of 𝑝-elements in a finite group, Ann. Mat. Pura Appl. (4) 200 (2021), no. 3, 1231–1243. 10.1007/s10231-020-01035-9Suche in Google Scholar

[10] D. Gorenstein, The classification of finite simple groups. I. Simple groups and local analysis, Bull. Amer. Math. Soc. (N. S.) 1 (1979), no. 1, 43–199. 10.1090/S0273-0979-1979-14551-8Suche in Google Scholar

[11] C. Hering, W. M. Kantor and G. M. Seitz, Finite groups with a split B N -pair of rank 1. I, J. Algebra 20 (1972), 435–475. 10.1016/0021-8693(72)90068-3Suche in Google Scholar

[12] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Suche in Google Scholar

[13] B. Huppert and N. Blackburn, Finite groups. III, Grundlehren Math. Wiss. 243, Springer, Berlin, 1982. 10.1007/978-3-642-67997-1Suche in Google Scholar

[14] W. Knapp and P. Schmid, Sylow intersections and Frobenius ratios, Arch. Math. (Basel) 123 (2024), no. 1, 9–17. 10.1007/s00013-024-01995-xSuche in Google Scholar

[15] A. Maróti, J. Martínez and A. Moretó, Covering the set of 𝑝-elements in finite groups by Sylow 𝑝-subgroups, J. Algebra 638 (2024), 840–861. 10.1016/j.jalgebra.2023.10.008Suche in Google Scholar

[16] B. Sambale, On redundant Sylow subgroups, J. Algebra 650 (2024), 1–9. 10.1016/j.jalgebra.2024.04.002Suche in Google Scholar

[17] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. 80, American Mathematical Society, Providence, 1968. 10.1090/memo/0080Suche in Google Scholar

Received: 2025-03-26
Revised: 2025-05-20
Published Online: 2025-06-19

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2025-0052/pdf
Button zum nach oben scrollen