Startseite Mathematik Groups of projectivities and Levi subgroups in spherical buildings of simply laced type
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Groups of projectivities and Levi subgroups in spherical buildings of simply laced type

  • Sira Busch , Jeroen Schillewaert und Hendrik Van Maldeghem EMAIL logo
Veröffentlicht/Copyright: 14. Januar 2026
Journal of Group Theory
Aus der Zeitschrift Journal of Group Theory

Abstract

We introduce the special and general projectivity groups attached to a simplex 𝐹 of a thick, irreducible, spherical building of simply laced type. If the residue of 𝐹 is irreducible, we determine the permutation group of both projectivity groups of 𝐹, acting on the residue of 𝐹 and show that the special projectivity group determines the precise action of the Levi subgroup of a parabolic subgroup on the corresponding residue. This reveals three special cases for the exceptional types E 6 , E 7 , E 8 . Furthermore, we establish a general diagrammatic rule to decide when exactly the special and general projectivity groups of 𝐹 coincide.

Award Identifier / Grant number: EXC 2044 – 390685587

Funding source: Marsden Fund

Award Identifier / Grant number: UOA-2122

Funding statement: The first author is funded by the Claussen-Simon-Stiftung and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics–Geometry–Structure. All authors were supported by the New Zealand Marsden Fund grant UOA-2122 of the second author. This work is part of the PhD project of the first author.

Acknowledgements

The authors are grateful to Gernot Stroth for an illuminating discussion concerning the structure and action of Levi complements in Chevalley groups and to the referee for some very helpful comments and suggesting different approaches at various points, in particular the approach using algebraic groups in Section 8.1.

  1. Communicated by: Christopher W. Parker

References

[1] P. Abramenko and K. S. Brown, Buildings. Theory and Applications, Grad. Texts in Math. 248, Springer, New York, 2008. 10.1007/978-0-387-78835-7Suche in Google Scholar

[2] A. Borel, Linear Algebraic Groups, Grad. Texts in Math. 126, Springer, New York, 1969. Suche in Google Scholar

[3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Act. Sci. Indust. 1337, Hermann, Paris, 1968. Suche in Google Scholar

[4] F. Buekenhout and A. M. Cohen, Diagram Geometry Related to Classical Groups and Buildings, Ergeb. Math. Grenzgeb. (3) 57, Springer, Heidelberg, 2013. 10.1007/978-3-642-34453-4Suche in Google Scholar

[5] S. Busch and H. Van Maldeghem, A characterisation of lines in finite Lie incidence geometries of classical type, Discrete Math. 349 (2026), no. 2, Article ID 114711. 10.1016/j.disc.2025.114711Suche in Google Scholar

[6] S. Busch and H. Van Maldeghem, Lines and opposition in finite Lie incidence geometries of exceptional type, in progress. Suche in Google Scholar

[7] R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math. 28, John Wiley & Sons, London, 1972. Suche in Google Scholar

[8] R. W. Carter, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, Wiley Classics Lib., John Wiley & Sons, London, 1985. Suche in Google Scholar

[9] C. Chevalley, The Algebraic Theory of Spinors, Columbia University, New York, 1954. 10.7312/chev93056Suche in Google Scholar

[10] B. N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, Canad. J. Math. 28 (1976), no. 5, 1021–1031. 10.4153/CJM-1976-100-9Suche in Google Scholar

[11] B. N. Cooperstein, A characterization of some Lie incidence structures, Geom. Dedicata 6 (1977), no. 2, 205–258. 10.1007/BF00181461Suche in Google Scholar

[12] C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1–59. 10.1090/S0002-9947-1976-0422440-8Suche in Google Scholar

[13] A. De Schepper, N. S. N. Sastry and H. Van Maldeghem, Split buildings of type F 4 in buildings of type E 6 , Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 1, 97–160. 10.1007/s12188-017-0190-5Suche in Google Scholar

[14] A. De Schepper, N. S. N. Sastry and H. Van Maldeghem, Buildings of exceptional type in buildings of type E 7 , Dissertationes Math. 573 (2022), 1–80. 10.4064/dm839-10-2021Suche in Google Scholar

[15] A. De Schepper, J. Schillewaert and H. Van Maldeghem, On the generating rank and embedding rank of the hexagonic Lie incidence geometries, Combinatorica 44 (2024), no. 2, 355–392. 10.1007/s00493-023-00075-ySuche in Google Scholar

[16] A. De Schepper and H. Van Maldeghem, On inclusions of exceptional long root geometries of type 𝖤, Innov. Incidence Geom. 20 (2023), no. 2–3, 247–293. 10.2140/iig.2023.20.247Suche in Google Scholar

[17] J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27–45. 10.24033/bsmf.1345Suche in Google Scholar

[18] J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer, Berlin, 1963. 10.1007/978-3-662-59144-4Suche in Google Scholar

[19] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Math. Surveys Monogr. 40, American Mathematical Society, Providence, 1994. 10.1090/surv/040.1Suche in Google Scholar

[20] N. Knarr, Projectivities of generalized polygons, Ars Combin. 25B (1988), 265–275. Suche in Google Scholar

[21] B. Mühlherr, H. P. Petersson and R. M. Weiss, Descent in Buildings, Ann. of Math. Stud.190, Princeton University, Princeton, 2015. 10.1515/9781400874019Suche in Google Scholar

[22] B. Mühlherr and M. Ronan, Local to global structure in twin buildings, Invent. Math. 122 (1995), no. 1, 71–81. 10.1007/BF01231439Suche in Google Scholar

[23] S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Res. Notes Math. 110, Pitman, Boston, 1984. Suche in Google Scholar

[24] E. E. Shult, Points and Lines: Characterizing the Classical Geometries, Universitext, Springer, Heidelberg, 2011. 10.1007/978-3-642-15627-4Suche in Google Scholar

[25] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968. Suche in Google Scholar

[26] Y. Stepanov, On an octonionic construction of the groups of type E 6 and E 6 2 , PhD thesis, Queen Mary University of London, 2020. Suche in Google Scholar

[27] B. Temmermans, J. A. Thas and H. Van Maldeghem, Domesticity in projective spaces, Innov. Incidence Geom. 12 (2011), 141–149. 10.2140/iig.2011.12.141Suche in Google Scholar

[28] J. Tits, Sur la géométrie des 𝑅-espaces, J. Math. Pures Appl. (9) 36 (1957), 17–38. Suche in Google Scholar

[29] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. 10.2307/1970394Suche in Google Scholar

[30] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math. 386, Springer, Berlin, 1974. Suche in Google Scholar

[31] J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), no. 3, 283–295. 10.1007/BF01390082Suche in Google Scholar

[32] H. Van Maldeghem, Generalized Polygons, Monogr. Math. 93, Birkhäuser, Basel, 1998. 10.1007/978-3-0348-0271-0Suche in Google Scholar

[33] H. Van Maldeghem, Symplectic polarities of buildings of type E 6 , Des. Codes Cryptogr. 65 (2012), no. 1–2, 115–125. 10.1007/s10623-011-9573-2Suche in Google Scholar

[34] H. Van Maldeghem and M. Victoor, Some combinatorial and geometric constructions of spherical buildings, Surveys in Combinatorics 2019, London Math. Soc. Lecture Note Ser. 456, Cambridge University, Cambridge (2019), 237–265. 10.1017/9781108649094.009Suche in Google Scholar

[35] H. Van Maldeghem and M. Victoor, On Severi varieties as intersections of a minimum number of quadrics, Cubo 24 (2022), no. 2, 307–331. 10.56754/0719-0646.2402.0307Suche in Google Scholar

Received: 2024-09-09
Revised: 2025-09-23
Published Online: 2026-01-14

© 2026 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2024-0185/html?lang=de
Button zum nach oben scrollen