Startseite Mathematik Cyclic complementary extensions and skew-morphism
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cyclic complementary extensions and skew-morphism

  • Kan Hu und Robert Jajcay EMAIL logo
Veröffentlicht/Copyright: 20. Januar 2026
Journal of Group Theory
Aus der Zeitschrift Journal of Group Theory

Abstract

A cyclic complementary extension of a finite group 𝐴 is a finite group 𝐺 which contains 𝐴 and a cyclic subgroup 𝐶 such that A C = { 1 G } and G = A C . For any fixed generator 𝑐 of the cyclic factor C = c of order 𝑛 in a cyclic complementary extension G = A C , the equations c x = φ ( x ) c Π ( x ) , x A , determine a permutation φ : A A and a function Π : A Z n on 𝐴 characterized by the following properties:

  1. φ ( 1 A ) = 1 A and Π ( 1 A ) 1 ( mod n ) ;

  2. φ ( x y ) = φ ( x ) φ Π ( x ) ( y ) and Π ( x y ) i = 1 Π ( x ) Π ( φ i 1 ( y ) ) ( mod n ) for all x , y A .

The permutation 𝜑 is called a skew-morphism of 𝐴 and has already been extensively studied. One of the main contributions of the present paper is the recognition of the importance of the function Π, which we call the extended power function associated with 𝜑. We show that every cyclic complementary extension of 𝐴 is determined and can be constructed from a skew-morphism 𝜑 of 𝐴 and an extended power function Π associated with 𝜑. As an application, we present a classification of cyclic complementary extensions of cyclic groups obtained using skew-morphisms which are group automorphisms.

Award Identifier / Grant number: 11801507

Award Identifier / Grant number: 12471332

Award Identifier / Grant number: N1-0208

Award Identifier / Grant number: 1/0437/23

Award Identifier / Grant number: 23-0076

Funding statement: The first author is supported by the National Natural Science Foundation of China (11801507, 12471332) and the Slovenian Research Agency (N1-0208). The second author is supported by VEGA Research Grant 1/0437/23 and APVV Research Grant 23-0076.

  1. Communicated by: Christopher W. Parker

References

[1] B. Amberg and L. Kazarin, Factorizations of groups and related topics, Sci. China Ser. A 52 (2009), no. 2, 217–230. 10.1007/s11425-009-0024-8Suche in Google Scholar

[2] M. Bachratý, Quotients of skew morphisms of cyclic groups, Ars Math. Contemp. 24 (2024), no. 2, Paper No. 8. 10.26493/1855-3974.2947.cd6Suche in Google Scholar

[3] M. Bachratý, M. Conder and G. Verret, Skew product groups for monolithic groups, Algebr. Comb. 5 (2022), no. 5, 785–802. 10.5802/alco.206Suche in Google Scholar

[4] M. Bachratý, Skew morphisms and skew product groups of finite groups, PhD thesis, University of Auckland, 2020. Suche in Google Scholar

[5] M. Bachratý and R. Jajcay, Powers of skew-morphisms, Symmetries in Graphs, Maps, and Polytopes, Springer Proc. Math. Stat. 159, Springer, Cham (2016), 1–25. 10.1007/978-3-319-30451-9_1Suche in Google Scholar

[6] M. Bachratý and R. Jajcay, Classification of coset-preserving skew-morphisms of finite cyclic groups, Australas. J. Combin. 67 (2017), 259–280. Suche in Google Scholar

[7] J. Chen, S. Du and C. H. Li, Skew-morphisms of nonabelian characteristically simple groups, J. Combin. Theory Ser. A 185 (2022), Article ID 105539. 10.1016/j.jcta.2021.105539Suche in Google Scholar

[8] M. Conder, R. Jajcay and T. Tucker, Regular 𝑡-balanced Cayley maps, J. Combin. Theory Ser. B 97 (2007), no. 3, 453–473. 10.1016/j.jctb.2006.07.008Suche in Google Scholar

[9] M. D. E. Conder, R. Jajcay and T. W. Tucker, Cyclic complements and skew morphisms of groups, J. Algebra 453 (2016), 68–100. 10.1016/j.jalgebra.2015.12.024Suche in Google Scholar

[10] M. D. E. Conder and T. W. Tucker, Regular Cayley maps for cyclic groups, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3585–3609. 10.1090/S0002-9947-2014-05933-3Suche in Google Scholar

[11] J. Douglas, On the supersolvability of bicyclic groups, Proc. Natl. Acad. Sci. USA 47 (1961), 1493–1495. 10.1073/pnas.47.9.1493Suche in Google Scholar PubMed PubMed Central

[12] S. Du and K. Hu, Skew-morphisms of cyclic 2-groups, J. Group Theory 22 (2019), no. 4, 617–635. 10.1515/jgth-2019-2046Suche in Google Scholar

[13] S. Du, W. Luo, H. Yu and J. Zhang, Skew-morphisms of elementary abelian 𝑝-groups, J. Group Theory 27 (2024), no. 6, 1337–1355. 10.1515/jgth-2022-0092Suche in Google Scholar

[14] S. Du, H. Yu and W. Luo, Regular Cayley maps of elementary abelian 𝑝-groups: Classification and enumeration, J. Combin. Theory Ser. A 198 (2023), Paper No. 105768. 10.1016/j.jcta.2023.105768Suche in Google Scholar

[15] Y.-Q. Feng, K. Hu, R. Nedela, M. Škoviera and N.-E. Wang, Complete regular dessins and skew-morphisms of cyclic groups, Ars Math. Contemp. 18 (2020), no. 2, 289–307. 10.26493/1855-3974.1748.ebdSuche in Google Scholar

[16] K. Hu, I. Kovács and Y. S. Kwon, A classification of skew morphisms of dihedral groups, J. Group Theory 26 (2023), no. 3, 547–569. Suche in Google Scholar

[17] K. Hu, I. Kovács and Y. S. Kwon, Classification of cyclic groups underlying only smooth skew morphisms, J. Algebraic Combin. 59 (2024), no. 4, 849–862. 10.1007/s10801-024-01311-4Suche in Google Scholar

[18] K. Hu, Y. S. Kwon and J.-Y. Zhang, Classification of skew morphisms of cyclic groups which are square roots of automorphisms, Ars Math. Contemp. 21 (2021), no. 2, Paper No. 1. 10.26493/1855-3974.2129.ac1Suche in Google Scholar

[19] K. Hu, R. Nedela, N.-E. Wang and K. Yuan, Reciprocal skew morphisms of cyclic groups, Acta Math. Univ. Comenian. (N. S.) 88 (2019), no. 2, 305–318. Suche in Google Scholar

[20] K. Hu and D. Ruan, Smooth skew morphisms of dicyclic groups, J. Algebraic Combin. 56 (2022), no. 4, 1119–1134. 10.1007/s10801-022-01149-8Suche in Google Scholar

[21] K. Hu and M. Zhang, Cyclic complementary extensions via automorphisms of generalized quaternion groups, Bull. Korean Math. Soc. 61 (2024), no. 5, 1269–1287. Suche in Google Scholar

[22] B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1953), 243–264. 10.1007/BF01174144Suche in Google Scholar

[23] N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400–401. 10.1007/BF01180647Suche in Google Scholar

[24] R. Jajcay and J. Širáň, Skew-morphisms of regular Cayley maps, Discrete Math. 224 (2002), 167–179. 10.1016/S0012-365X(01)00081-4Suche in Google Scholar

[25] Z. Janko, Finite 2-groups with exactly one nonmetacyclic maximal subgroup, Israel J. Math. 166 (2008), 313–347. 10.1007/s11856-008-1033-ySuche in Google Scholar

[26] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. (Basel) 12 (1961), 90–93. 10.1007/BF01650529Suche in Google Scholar

[27] I. Kovács and Y. S. Kwon, Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B 148 (2021), 84–124. 10.1016/j.jctb.2020.12.002Suche in Google Scholar

[28] I. Kovács and R. Nedela, Decomposition of skew-morphisms of cyclic groups, Ars Math. Contemp. 4 (2011), no. 2, 329–349. 10.26493/1855-3974.157.fc1Suche in Google Scholar

[29] I. Kovács and R. Nedela, Skew-morphisms of cyclic 𝑝-groups, J. Group Theory 20 (2017), no. 6, 1135–1154. 10.1515/jgth-2017-0015Suche in Google Scholar

[30] C. H. Li, L. Wang and B. Xia, The exact factorizations of almost simple groups, J. Lond. Math. Soc. (2) 108 (2023), no. 4, 1417–1447. 10.1112/jlms.12784Suche in Google Scholar

[31] M. W. Liebeck, C. E. Praeger and J. Saxl, On factorizations of almost simple groups, J. Algebra 185 (1996), no. 2, 409–419. 10.1006/jabr.1996.0333Suche in Google Scholar

[32] M. W. Liebeck, C. E. Praeger and J. Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc. 203 (2010), no. 952, 1–74. 10.1090/S0065-9266-09-00569-9Suche in Google Scholar

[33] N.-E. Wang, K. Hu, K. Yuan and J.-Y. Zhang, Smooth skew morphisms of dihedral groups, Ars Math. Contemp. 16 (2019), no. 2, 527–547. 10.26493/1855-3974.1475.3d3Suche in Google Scholar

[34] H. Wielandt, Über Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958), 611–618. 10.1215/ijm/1255448333Suche in Google Scholar

[35] J.-Y. Zhang, A classification of regular Cayley maps with trivial Cayley-core for dihedral groups, Discrete Math. 338 (2015), no. 7, 1216–1225. 10.1016/j.disc.2015.01.036Suche in Google Scholar

[36] J.-Y. Zhang and S. Du, On the skew-morphisms of dihedral groups, J. Group Theory 19 (2016), no. 6, 993–1016. 10.1515/jgth-2016-0027Suche in Google Scholar

Received: 2024-07-01
Revised: 2025-11-10
Published Online: 2026-01-20

© 2026 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2024-0144/html?lang=de
Button zum nach oben scrollen