Startseite The algebraic entropy of one-dimensional finitary linear cellular automata
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The algebraic entropy of one-dimensional finitary linear cellular automata

  • Hasan Akın , Dikran Dikranjan , Anna Giordano Bruno ORCID logo EMAIL logo und Daniele Toller
Veröffentlicht/Copyright: 31. Januar 2024

Abstract

The aim of this paper is to present one-dimensional finitary linear cellular automata 𝑆 on Z m from an algebraic point of view. Among various other results, we (i) show that the Pontryagin dual S ̂ of 𝑆 is a classical one-dimensional linear cellular automaton 𝑇 on Z m ; (ii) give several equivalent conditions for 𝑆 to be invertible with inverse a finitary linear cellular automaton; (iii) compute the algebraic entropy of 𝑆, which coincides with the topological entropy of T = S ̂ by the so-called Bridge Theorem. In order to better understand and describe entropy, we introduce the degree deg ( S ) and deg ( T ) of 𝑆 and 𝑇.

Funding statement: The first author (H. Akın) was supported by the Simons Foundation (10.13039/100000893), United States and the Institute of International Education, United States.

Acknowledgements

It is a pleasure to thank the referee for the very careful reading and various helpful suggestions. The second and the third authors are members of the group GNSAGA of INdAM.

  1. Communicated by: Timothy C. Burness

References

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. 10.1090/S0002-9947-1965-0175106-9Suche in Google Scholar

[2] H. Akın, The topological entropy of 𝑛th iteration of an additive cellular automata, Appl. Math. Comput. 174 (2006), no. 2, 1427–1437. 10.1016/j.amc.2005.05.039Suche in Google Scholar

[3] H. Akın, The topological entropy of invertible cellular automata, J. Comput. Appl. Math. 213 (2008), no. 2, 501–508. 10.1016/j.cam.2007.01.020Suche in Google Scholar

[4] S. Amoroso and G. Cooper, Tessellation structures for reproduction of arbitrary patterns, J. Comput. System Sci. 5 (1971), 455–464. 10.1016/S0022-0000(71)80009-0Suche in Google Scholar

[5] N. Aoki, Topological entropy and measure-theoretic entropy for automorphisms on compact groups, Math. Systems Theory 5 (1971), 4–7. 10.1007/BF01691461Suche in Google Scholar

[6] L. Außenhofer, D. Dikranjan and A. Giordano Bruno, Topological Groups and the Pontryagin–van Kampen Duality—An Introduction, De Gruyter Stud. Math. 83, De Gruyter, Berlin, 2022. 10.1515/9783110654936Suche in Google Scholar

[7] F. Blanchard, P. Kůrka and A. Maass, Topological and measure-theoretic properties of one-dimensional cellular automata, Phys. D 103 (1997), no. 1–4, 86–99. 10.1016/S0167-2789(96)00254-0Suche in Google Scholar

[8] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. 10.1090/S0002-9947-1971-0274707-XSuche in Google Scholar

[9] T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer Monogr. Math., Springer, Berlin, 2010. 10.1007/978-3-642-14034-1Suche in Google Scholar

[10] M. D’amico, G. Manzini and L. Margara, On computing the entropy of cellular automata, Automata, Languages and Programming, Lecture Notes in Comput. Sci. 1443, Springer, Berlin (1998), 470–481. 10.1007/BFb0055076Suche in Google Scholar

[11] M. D’amico, G. Manzini and L. Margara, On computing the entropy of cellular automata, Theoret. Comput. Sci. 290 (2003), no. 3, 1629–1646. 10.1016/S0304-3975(02)00071-3Suche in Google Scholar

[12] P. Di Lena, On computing the topological entropy of one-sided cellular automata, J. Cell. Autom. 2 (2007), no. 2, 121–129. Suche in Google Scholar

[13] D. Dikranjan and A. Giordano Bruno, The connection between topological and algebraic entropy, Topology Appl. 159 (2012), no. 13, 2980–2989. 10.1016/j.topol.2012.05.009Suche in Google Scholar

[14] D. Dikranjan and A. Giordano Bruno, The Pinsker subgroup of an algebraic flow, J. Pure Appl. Algebra 216 (2012), no. 2, 364–376. 10.1016/j.jpaa.2011.06.018Suche in Google Scholar

[15] D. Dikranjan and A. Giordano Bruno, The bridge theorem for totally disconnected LCA groups, Topology Appl. 169 (2014), 21–32. 10.1016/j.topol.2014.02.029Suche in Google Scholar

[16] D. Dikranjan and A. Giordano Bruno, Entropy on abelian groups, Adv. Math. 298 (2016), 612–653. 10.1016/j.aim.2016.04.020Suche in Google Scholar

[17] D. Dikranjan and A. Giordano Bruno, Entropy on normed semigroups (towards a unifying approach to entropy), Dissertationes Math. 542 (2019), 1–90. 10.4064/dm791-2-2019Suche in Google Scholar

[18] D. Dikranjan, B. Goldsmith, L. Salce and P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3401–3434. 10.1090/S0002-9947-09-04843-0Suche in Google Scholar

[19] P. Favati, G. Lotti and L. Margara, Additive one-dimensional cellular automata are chaotic according to Devaney’s definition of chaos, Theoret. Comput. Sci. 174 (1997), no. 1–2, 157–170. 10.1016/S0304-3975(95)00022-4Suche in Google Scholar

[20] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. 10.1007/BF01691062Suche in Google Scholar

[21] L. P. Hurd, J. Kari and K. Culik, The topological entropy of cellular automata is uncomputable, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 255–265. 10.1017/S0143385700006738Suche in Google Scholar

[22] M. Itô, N. Ôsato and M. Nasu, Linear cellular automata over Z m , J. Comput. System Sci. 27 (1983), no. 1, 125–140. 10.1016/0022-0000(83)90033-8Suche in Google Scholar

[23] J. Peters, Entropy on discrete abelian groups, Adv. Math. 33 (1979), no. 1, 1–13. 10.1016/S0001-8708(79)80007-9Suche in Google Scholar

[24] J. Peters, Entropy of automorphisms on L. C. A. groups, Pacific J. Math. 96 (1981), no. 2, 475–488. 10.2140/pjm.1981.96.475Suche in Google Scholar

[25] D. Richardson, Tessellations with local transformations, J. Comput. System Sci. 6 (1972), 373–388. 10.1016/S0022-0000(72)80009-6Suche in Google Scholar

[26] M. Sablik, Measure rigidity for algebraic bipermutative cellular automata, Ergodic Theory Dynam. Systems 27 (2007), 1965–1990. 10.1017/S0143385707000247Suche in Google Scholar

[27] L. N. Stojanov, Uniqueness of topological entropy for endomorphisms on compact groups, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 3, 829–847. Suche in Google Scholar

[28] S. Virili, Entropy for endomorphisms of LCA groups, Topology Appl. 159 (2012), no. 9, 2546–2556. 10.1016/j.topol.2011.02.017Suche in Google Scholar

[29] J. von Neumann, The Theory of Self-Reproducing Automata, University of Illinois, Urbana, 1966. Suche in Google Scholar

[30] M. D. Weiss, Algebraic and other entropies of group endomorphisms, Math. Systems Theory 8 (1974/75), no. 3, 243–248. 10.1007/BF01762672Suche in Google Scholar

Received: 2023-06-20
Revised: 2023-11-01
Published Online: 2024-01-31
Published in Print: 2024-07-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0092/html
Button zum nach oben scrollen