Startseite Normal subgroups in limit groups of prime index
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Normal subgroups in limit groups of prime index

  • Thomas S. Weigel EMAIL logo und Jhoel S. Gutierrez
Veröffentlicht/Copyright: 17. Oktober 2017

Abstract

Motivated by their study of pro-p limit groups, D. H. Kochloukova and P. A. Zalesskii formulated in [15, Remark after Theorem 3.3] a question concerning the minimum number of generators d(N) of a normal subgroup N of prime index p in a non-abelian limit group G (see Question*). It is shown that the analogous question for the rational rank has an affirmative answer (see Theorem A). From this result one may conclude that the original question of Kochloukova and Zalesskii has an affirmative answer if the abelianization Gab of G is torsion free and d(G)=d(Gab) (see Corollary B), or if G is a special kind of one-relator group (see Theorem D).


Communicated by Dessislava H. Kochloukova


Funding statement: The second author was supported by CNPq-Brazil.

Acknowledgements

The authors would like to thank H. Wilton for a very useful comment concerning an earlier version of the paper, and also the referee for his/her helpful remarks.

References

[1] E. Alibegović and M. Bestvina, Limit groups are CAT(0), J. Lond. Math. Soc. (2) 74 (2006), no. 1, 259–272. 10.1112/S0024610706023155Suche in Google Scholar

[2] B. Baumslag, Residually free groups, Proc. Lond. Math. Soc. (3) 17 (1967), 402–418. 10.1112/plms/s3-17.3.402Suche in Google Scholar

[3] M. Bestvina and M. Feighn, Notes on Sela’s work: Limit groups and Makanin–Razborov diagrams, Geometric and Cohomological Methods in Group Theory, London Math. Soc. Lecture Note Ser. 358, Cambridge University Press, Cambridge (2009), 1–29. 10.1017/CBO9781139107099.002Suche in Google Scholar

[4] T. Camps, V. Große Rebel and G. Rosenberger, Einführung in die kombinatorische und die geometrische Gruppentheorie, Berliner Studienreihe Math. 19, Heldermann, Lemgo, 2008. Suche in Google Scholar

[5] C. Champetier and V. Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005), 1–75. 10.1007/BF02773526Suche in Google Scholar

[6] B. Fine, A. M. Gaglione, A. Myasnikov, G. Rosenberger and D. Spellman, A classification of fully residually free groups of rank three or less, J. Algebra 200 (1998), no. 2, 571–605. 10.1006/jabr.1997.7205Suche in Google Scholar

[7] B. Fine, G. Rosenberger and M. Stille, Conjugacy pinched and cyclically pinched one-relator groups, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 207–227. 10.5209/rev_REMA.1997.v10.n2.17397Suche in Google Scholar

[8] V. Guirardel, Limit groups and groups acting freely on n-trees, Geom. Topol. 8 (2004), 1427–1470. 10.2140/gt.2004.8.1427Suche in Google Scholar

[9] I. Kapovich, Subgroup properties of fully residually free groups, Trans. Amer. Math. Soc. 354 (2002), no. 1, 335–362. 10.1090/S0002-9947-01-02840-9Suche in Google Scholar

[10] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), no. 2, 472–516. 10.1006/jabr.1997.7183Suche in Google Scholar

[11] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), no. 2, 517–570. 10.1006/jabr.1997.7184Suche in Google Scholar

[12] O. Kharlampovich and A. Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), no. 2, 451–552. 10.1016/j.jalgebra.2006.03.033Suche in Google Scholar

[13] O. G. Kharlampovich, A. G. Myasnikov, V. N. Remeslennikov and D. E. Serbin, Subgroups of fully residually free groups: Algorithmic problems, Group Theory, Statistics, and Cryptography, Contemp. Math. 360, American Mathematical Society, Providence (2004), 63–101. 10.1090/conm/360/06571Suche in Google Scholar

[14] D. H. Kochloukova, On subdirect products of type FPm of limit groups, J. Group Theory 13 (2010), no. 1, 1–19. 10.1515/jgt.2009.028Suche in Google Scholar

[15] D. Kochloukova and P. Zalesskii, Subgroups and homology of extensions of centralizers of pro-p groups, Math. Nachr. 288 (2015), no. 5–6, 604–618. 10.1002/mana.201400104Suche in Google Scholar

[16] F. Paulin, Sur la théorie élémentaire des groupes libres (d’après Sela), Astérisque (2004), no. 294, 363–402. Suche in Google Scholar

[17] Z. Sela, Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001), no. 93, 31–105. 10.1007/s10240-001-8188-ySuche in Google Scholar

[18] Z. Sela, Diophantine geometry over groups. II. Completions, closures and formal solutions, Israel J. Math. 134 (2003), 173–254. 10.1007/BF02787407Suche in Google Scholar

[19] J.-P. Serre, Galois Cohomology, Springer Monogr. Math., Springer, Berlin, 2002. Suche in Google Scholar

[20] J.-P. Serre, Trees, Springer Monogr. Math., Springer, Berlin, 2003. Suche in Google Scholar

[21] H. Wilton, Abelianization of limit groups, 2015, http://mathoverflow.net/questions/209853/abelianization-of-limit-groups. Suche in Google Scholar

Received: 2016-7-25
Revised: 2017-5-25
Published Online: 2017-10-17
Published in Print: 2018-1-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2017-0030/html?lang=de
Button zum nach oben scrollen