Startseite Filtrations of free groups arising from the lower central series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Filtrations of free groups arising from the lower central series

  • Michael Chapman EMAIL logo und Ido Efrat
Veröffentlicht/Copyright: 9. April 2016

Abstract

We make a systematic study of filtrations of a free group F defined as products of powers of the lower central series of F. Under some assumptions on the exponents, we characterize these filtrations in terms of the group algebra, the Magnus algebra of non-commutative power series, and linear representations by upper-triangular unipotent matrices. These characterizations generalize classical results of Grün, Magnus, Witt, and Zassenhaus from the 1930s, as well as later results on the lower p-central filtration and the p-Zassenhaus filtrations. We derive alternative recursive definitions of such filtrations, extending results of Lazard. Finally, we relate these filtrations to Massey products in group cohomology.

Award Identifier / Grant number: 23/09

Award Identifier / Grant number: 152/13

Funding statement: This work was supported by the Israel Science Foundation (grants No. 23/09 and 152/13). It is partially based on the M.Sc. thesis of the first author done under the supervision of the second author in Ben-Gurion University of the Negev.

We thank Ilya Tyomkin for valuable remarks which shortened some of our original arguments. We also thank the anonymous referee for his/her very helpful comments, which we have used to improve the presentation at several points.

References

1 F. Bogomolov and Y. Tschinkel, Introduction to birational anabelian geometry, Current Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ. 59, Cambridge University Press, Cambridge (2012), 17–63. 10.1017/9781139032766.003Suche in Google Scholar

2 B. Chandler and W. Magnus, The History of Combinatorial Group Theory: A Case Study of the History of Ideas, Stud. Hist. Math. Phys. Sci. 9, Springer, New York, 1982. 10.1007/978-1-4613-9487-7Suche in Google Scholar

3 S. K. Chebolu, I. Efrat and J. Mináč, Quotients of absolute Galois groups which determine the entire Galois cohomology, Math. Ann. 352 (2012), 205–221. 10.1007/s00208-011-0635-6Suche in Google Scholar

4 J. D. Dixon, M. P. F. Du Sautoy, A. Mann and D. Segal, Analytic Pro-p Groups, Cambridge University Press, Cambridge, 1999. 10.1017/CBO9780511470882Suche in Google Scholar

5 W. G. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975), 177–190. 10.1016/0022-4049(75)90006-7Suche in Google Scholar

6 I. Efrat, Filtrations of free groups as intersections, Arch. Math. (Basel) 103 (2014), 411–420. 10.1007/s00013-014-0701-xSuche in Google Scholar

7 I. Efrat, The Zassenhaus filtration, Massey products, and representations of profinite groups, Adv. Math. 263 (2014), 389–411. 10.1016/j.aim.2014.07.006Suche in Google Scholar

8 I. Efrat and J. Mináč, On the descending central sequence of absolute Galois groups, Amer. J. Math. 133 (2011), 1503–1532. 10.1353/ajm.2011.0041Suche in Google Scholar

9 I. Efrat and J. Mináč, Galois groups and cohomological functors, Trans. Amer. Math. Soc., to appear. 10.1090/tran/6724Suche in Google Scholar

10 R. A. Fenn, Techniques of Geometric Topology, London Math. Soc. Lect. Notes Series 57, Cambridge University Press, Cambridge, 1983. Suche in Google Scholar

11 O. Grün, Über eine Faktorgruppe freier Gruppen I, Deutsche Math. 1 (1936), 772–782. Suche in Google Scholar

12 S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 169–187. 10.2307/1989916Suche in Google Scholar

13 H. Koch, Über die Faktorgruppen einer absteigenden Zentralreihe, Math. Nach. 22 (1960), 159–161. 10.1002/mana.19600220307Suche in Google Scholar

14 H. Koch, Galois Theory of p-Extensions, Springer, Berlin, 2002. 10.1007/978-3-662-04967-9Suche in Google Scholar

15 D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431–449. 10.1090/S0002-9947-1966-0202136-1Suche in Google Scholar

16 M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér. (3) 71 (1954), 101–190. 10.24033/asens.1021Suche in Google Scholar

17 M. Lazard, Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389–603. Suche in Google Scholar

18 W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), 259–280. 10.1007/BF01472217Suche in Google Scholar

19 W. Magnus, Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math. 177 (1937), 105–115. 10.1515/crll.1937.177.105Suche in Google Scholar

20 J. Mináč and N. D. Tân, The kernel unipotent conjecture and the vanishing of Massey products for odd rigid fields. With an appendix by I. Efrat, J. Mináč, and N. D. Tân, Adv. Math. 273 (2015), 242–270. 10.1016/j.aim.2014.12.028Suche in Google Scholar

21 M. Morishita, Milnor invariants and Massey products for prime numbers, Compos. Math. 140 (2004), 69–83. 10.1112/S0010437X03000137Suche in Google Scholar

22 M. Morishita, Knots and Primes: An Introduction to Arithmetic Topology, Universitext, Springer, London, 2012. 10.1007/978-1-4471-2158-9Suche in Google Scholar

23 J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer, Berlin, 2008. 10.1007/978-3-540-37889-1Suche in Google Scholar

24 D. G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. 10.1016/0021-8693(68)90069-0Suche in Google Scholar

25 F. Röhl, Review and some critical comments on a paper of Grün concerning the dimension subgroup conjecture, Bol. Soc. Braz. Mat. 16 (1985), 11–27. 10.1007/BF02584798Suche in Google Scholar

26 J.-P. Serre, Lie Algebras and Lie Groups, Springer, Berlin, 1992. 10.1007/978-3-540-70634-2Suche in Google Scholar

27 A. I. Skopin, The factor groups of an upper central series of free groups (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 74 (1950), 425–428. Suche in Google Scholar

28 A. Topaz, Commuting-liftable subgroups of Galois groups II, J. Reine Angew. Math. (2015), 10.1515/crelle-2014-0115. 10.1515/crelle-2014-0115Suche in Google Scholar

29 D. Vogel, On the Galois group of 2-extensions with restricted ramification, J. Reine Angew. Math. 581 (2005), 117–150. 10.1515/crll.2005.2005.581.117Suche in Google Scholar

30 C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994. 10.1017/CBO9781139644136Suche in Google Scholar

31 E. Witt, Treue Darstellungen Liescher Ringe, J. Reine Angew. Math. 177 (1937), 152–160. 10.1515/crll.1937.177.152Suche in Google Scholar

32 H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit Charakteristik p zuzuorden, Abh. Math. Semin. Univ. Hambg. 13 (1939), 200–206. 10.1007/BF02940757Suche in Google Scholar

Received: 2015-4-22
Published Online: 2016-4-9
Published in Print: 2016-5-1

© 2016 by De Gruyter

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2016-0508/html
Button zum nach oben scrollen