Startseite Naturwissenschaften Using Titania Photocatalysts to Degrade Toluene in a Combined Adsorption and Photocatalysis Process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Using Titania Photocatalysts to Degrade Toluene in a Combined Adsorption and Photocatalysis Process

  • Linda Y. Zou EMAIL logo , Yonggang Luo und Eric J. Hu
Veröffentlicht/Copyright: 30. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three types of titania supported materials including titanium dioxide and silicon dioxide composite, titania-coated activated carbon and titania-coated glass beads were prepared and used as photocatalysts to remove toluene from an air stream. Their surface areas were analysed. TEM image reveals titania-silica composites were nanostructured aggregates. XRD was used to determine their crystalline phase which was 100% anatase for the titania component. A fixed bed reactor was designed and built in the laboratory, the toluene with initial concentration of 300 ppm (1149 mg/m3) was fed into the reactor, the destruction efficiencies of toluene were determined by the gas analyser. It was also found that TiO2-SiO2 aggregates with high surface area (421.1 m2/g) achieved high destruction efficiencies. The combined effects of adsorption and photocatalysis were further studied by comparing the performance of pure activated carbon (surface area of 932.4 m2/g) and TiO2 coated activated carbon with BET surface area of 848.4 m2/g. It was found that the TiO2 coated activated carbon demonstrated comparable results to pure activated carbon, and most importantly, the TiO2-coated activated carbon can be effectively regenerated by UV irradiation, and was reused as adsorbent. The experimental result of titania-coated glass beads demonstrated a steady degradation efficiency of 15% after a period of 17 hours. It helped to understand that photocatalysis degradation ability of the TiO2 was constant regardless of the adsorption capacity of the catalysts. This photocatalytic property can be used to degrade the adsorbed toluene and regenerate the catalyst. This study revealed that if the experiments were designed to use adsorption to remove toluene and followed by regeneration of adsorbent using photocatalysis, it could achieve a very high removal efficiency of toluene and reduce the regeneration cost of saturated adsorbent.

Received: 2006-1-3
Accepted: 2006-8-24
Published Online: 2016-11-30
Published in Print: 2007-1-1

© 2016 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Preface (TiO2-11 Section)
  2. Preface (AOTs-12 Section)
  3. Photocatalytic Decomposition of Formaldehyde Using Titania Coated Lime Tile
  4. TiO2-Nitrogen Modified for Water Decolourisation under VIS Radiation
  5. FTIR Studies of the Surface of TiO2, Fe-TiO2 and Fe-C-TiO2 Photocatalysts in Phenol Oxidation Via the Photo-Fenton Process
  6. Using Titania Photocatalysts to Degrade Toluene in a Combined Adsorption and Photocatalysis Process
  7. Photoelectrochemical Decomposition of VOCs on an Anodized TiO2 Plate
  8. Enhancement and Modeling of the Photocatalytic Degradation of Benzoic Acid
  9. Reactivity Indices for ortho/para Monosubstituted Phenols
  10. Modeling of the Photocatalytic Degradation Reactions of Aromatic Pollutants: A Solvent Effect Model
  11. Photodegradation of Malachite Green Using Immobilized TiO2 and Factorial Design
  12. Adsorption and Photodegradation of Humic Acids by Nano-Structured TiO2 for Water Treatment
  13. Photocatalytic Reductive Destruction of Azo Dyes by Polyoxometalates
  14. Effect of the Sintering Temperature on the Photocatalytic Activity of CdO + CdTiO3 Thin Films
  15. Photocatalytic Activity in Zn2TiO4 + ZnO Thin Films Obtained by the Sol-gel Process
  16. TiO2-Based Materials for Toluene Photocalytic Oxidation: Water Vapor Influence
  17. Influence of Aqueous Solubility of Various VOCs on Their Photocatalytic Degradation
  18. Photocatalysis: A Powerful Technology for Cold Storage Applications
  19. Some Remarks on So-Called Heterogeneous Photocatalysis and on the Mechanical Application of the Langmuir-Hinshelwood Kinetic Model
Heruntergeladen am 21.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jaots-2007-0106/html?lang=de
Button zum nach oben scrollen