Decomposition of Carbon Tetrachloride by a Packed Bed Plasma Reactor
-
G. Prieto
Abstract
In search of a technology capable of controlling atmospheric pollutants, like volatile organic compounds (VOCs) in low concentrations, this paper is concerned with the empirical modeling of a ferroelectric plasma packed-bed reactor at ambient temperature and pressure. The empirical model gives information about the decomposition efficiency of the process as a function of the reactor operating variables. The volatile organic compound selected is Carbon Tetrachloride balanced with air in the concentration-range of 150 to 600 ppm and flow-range of 175 to 325 ml/min. Regarding the decomposition efficiency as the objective function, this modeling provides valuable information about the optimal operating conditions.
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Masthead
- Contents
- Preface
- Editorial
- Research Articles
- An Industrial-Scale Experiment of Pulse Corona Process for Removing SO2 and NOx from Combustion Flue Gas
- Ozone and the Other Gaseous By-products Generated from Dry Air by the Trench Type Barrier Discharge Plasma Reactor
- Purification of Diesel Exhaust Gas Using Reducing Catalysers
- Reduction of NO2 in N2 by Non-Thermal Plasmas
- The Effect of Ammonia Injection Rate and Discharge Power on the Reduction of NOx from a Combustion Flue Gas by Superimposing Barrier Discharge Reactors
- Removal of NOx from Dry Air by a Pulsed Corona Discharge with Magnetic Field
- Comparison of Pulsed Corona and Electron Beam Processing of Hazardous Air Pollutants
- Effect of Gas Temperature on Pulsed Corona Discharge Processing of Acetone, Benzene and Ethylene
- Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review
- Decomposition of Carbon Tetrachloride by a Packed Bed Plasma Reactor
- Non-Thermal Plasma Processing for VOCs Decomposition and NOx Removal in Flue Gas
- Removal of Xylene, Trichloroethylene and Their Mixtures from Air Stream by a Pulsed Corona Discharge Induced Plasma Reactor
- Barrier Discharge Optimization for Nitric Oxide Destruction
Articles in the same Issue
- Masthead
- Contents
- Preface
- Editorial
- Research Articles
- An Industrial-Scale Experiment of Pulse Corona Process for Removing SO2 and NOx from Combustion Flue Gas
- Ozone and the Other Gaseous By-products Generated from Dry Air by the Trench Type Barrier Discharge Plasma Reactor
- Purification of Diesel Exhaust Gas Using Reducing Catalysers
- Reduction of NO2 in N2 by Non-Thermal Plasmas
- The Effect of Ammonia Injection Rate and Discharge Power on the Reduction of NOx from a Combustion Flue Gas by Superimposing Barrier Discharge Reactors
- Removal of NOx from Dry Air by a Pulsed Corona Discharge with Magnetic Field
- Comparison of Pulsed Corona and Electron Beam Processing of Hazardous Air Pollutants
- Effect of Gas Temperature on Pulsed Corona Discharge Processing of Acetone, Benzene and Ethylene
- Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review
- Decomposition of Carbon Tetrachloride by a Packed Bed Plasma Reactor
- Non-Thermal Plasma Processing for VOCs Decomposition and NOx Removal in Flue Gas
- Removal of Xylene, Trichloroethylene and Their Mixtures from Air Stream by a Pulsed Corona Discharge Induced Plasma Reactor
- Barrier Discharge Optimization for Nitric Oxide Destruction