Startseite Geopotential-number estimation based on regional and global geoid models towards vertical datum modernization in India
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Geopotential-number estimation based on regional and global geoid models towards vertical datum modernization in India

  • Ana Isela Vidal-Vega , Manuel E. Trejo-Soto EMAIL logo , Karan Nayak , Manuel Trejo-Echeagaray , Aníbal I. Arana Medina und Tiojari D. Guzman Galindo
Veröffentlicht/Copyright: 5. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Journal of Applied Geodesy
Aus der Zeitschrift Journal of Applied Geodesy

Abstract

This study focuses on the analysis of the dataset currently available over the Indian subcontinent for the calculation of geopotential numbers and orthometric heights, mainly the performance of regional and global geoid models across diverse topographic conditions. Using Global Navigation Satellite System (GNSS) observations from 17 Asia Pacific Regional Geodetic Project (APRGP) stations distributed across plains, plateaus, coastal areas, and complex mountainous regions, we compared six geoid models: three global (EIGEN-6C4, xGM2019e_2159, SGG-UGM-2) and three regionals (IndGG-SH2021, IndGG-CUT2021, and IndGG-LSMSA2021). Interpolated gravity values, geoidal heights, and geodetic coordinates were utilized to derive geopotential numbers, which were further analyzed to estimate orthometric heights and quantify the discrepancies obtained using currently available data. Our results indicate that recent global geoid models, particularly XGM2019e_2159 and SGG-UGM-2, have improved and have consistency with respect to regional geoid models, mainly with IndGG-SH2021 in terms of accuracy and reliability. Stations located in moderate terrain zones such as Bangalore, Delhi, and Hyderabad showed minimal variations (<±15 cm) in orthometric heights, However, significant discrepancies were observed in mountainous regions like Kashmir, where orthometric height differences exceeded ±25 cm, especially with the IndGG-CUT2021 model. Based on these findings, it is strongly recommended to use gravimetric geoid models derived from satellite missions to analyze the strength of regional models that allow to observation of the trend of the results in each model to verify its consistency. Furthermore, obtain absolute gravity data for India’s vertical datum modernization.


Corresponding author: Manuel E. Trejo-Soto, Faculty of Earth and Space Sciences, Autonomous University of Sinaloa, Culiacan, Mexico, E-mail: 

Acknowledgments

The authors thank the International Center for Global Earth Models (ICGM) for geoidal height and gravimetric data. This work was carried out with the support (CVU: 915661) of the Secretariat of Science, Humanities, Technology and Innovation (SECIHTI).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: This work was carried out with the support (CVU: 915661) of the Secretariat of Science, Humanities, Technology and Innovation (SECIHTI).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Vanicek, P, Krakiwsky, EJ. Geodesy: the concepts, 2nd ed. Amsterdam, North-Holland: Elsevier Science Publishers B.V.; 1986.Suche in Google Scholar

2. Bosch, W. Geodetic application of satellite altimetry. In: Hwang, C, Shum, CK, Li, J, editors. Satellite altimetry for geodesy, geophysics and oceanography. Berlin, Heidelberg: Springer; 2003:3–21 pp.10.1007/978-3-642-18861-9_1Suche in Google Scholar

3. Ihde, J, Barzaghi, R, Marti, U, Sánchez, L, Sideris, M, Drewes, H, et al.. Report of the Ad-hoc group on an International Height Reference System (IHRS). In: Drewes, H, Hornik, H, editors. Travaux de l’AIG 39, IAG reports 2011–2015; 2015.Suche in Google Scholar

4. Rummel, R. Height unification using GOCE. J Geod Sci 2012;2:355–62. https://doi.org/10.2478/v10156-011-0047-2.Suche in Google Scholar

5. Janjić, T, Schröter, J, Savcenko, R, Bosch, W, Albertella, A, Rummel, R, et al.. Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 2012;8:65–79. https://doi.org/10.5194/os-8-65-2012.Suche in Google Scholar

6. Dahle, C, Murböck, M, Flechtner, F, Dobslaw, H, Michalak, G, Neumayer, KH, et al.. The GFZ GRACE RL06 monthly gravity field time series: processing details and quality assessment. Remote Sens (Basel). 2019;11:2116. https://doi.org/10.3390/rs11182116.Suche in Google Scholar

7. Förste, C, Bruinsma, SL, Abrikosov, O, Lemoine, JM, Schaller, T, Götze, HJ, et al.. The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ potsdam and GRGS Toulouse. Potsdam, Germany and Toulouse, France: GFZ; 2014, vol 11.Suche in Google Scholar

8. Zingerle, P, Pail, R, Gruber, T, Oikonomidou, X. The combined global gravity field model XGM2019e. J Geod 2020;94:66. https://doi.org/10.1007/s00190-020-01398-0.Suche in Google Scholar

9. Liang, W, Li, J, Xu, X, Zhang, S, Zhao, Y. A high-resolution earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering 2020;6:860–78. https://doi.org/10.1016/j.eng.2020.05.008.Suche in Google Scholar

10. Amjadiparvar, B, Rangelova, EV, Sideris, MG, Véronneau, M. North American height datums and their offsets: the effect of GOCE omission errors and systematic levelling effects. J Appl Geodesy 2013;7:39–50. https://doi.org/10.1515/jag-2012-0034.Suche in Google Scholar

11. Sánchez, L, Ågren, J, Huang, J, Wang, YM, Mäkinen, J, Pail, R, et al.. Strategy for the realisation of the International Height Reference System (IHRS). J Geod 2021;95:33. https://doi.org/10.1007/s00190-021-01481-0.Suche in Google Scholar

12. Barzaghi, R, Carrion, D, Reguzzoni, M, Venuti, G. A feasibility study on the unification of the italian height systems using GNSS-leveling data and global satellite gravity models. In: International association of geodesy symposia. Springer Verlag; 2015:281–8 pp.10.1007/1345_2015_35Suche in Google Scholar

13. Sánchez, L. Strategy to establish a global vertical reference system. In: International association of geodesy symposia; 2009:273–8 pp.10.1007/978-3-642-00860-3_42Suche in Google Scholar

14. Drewes, H, Kuglitsch, F, Adám, J, Rózsa, S. The geodesist’s handbook 2016. J Geod 2016;90:907–1205. https://doi.org/10.1007/s00190-016-0948-z.Suche in Google Scholar

15. Sánchez, L, Sideris, MG. Vertical datum unification for the International Height Reference System (IHRS). Geophys J Int 2017;209:570–86.10.1093/gji/ggx025Suche in Google Scholar

16. Guimarães, GN, Blitzkow, D. Guía 04 Selección de Estaciones IHRF. Bogotá, Colombia: Guías técnicas. SIRGAS; 2025.Suche in Google Scholar

17. Vergos, G, Sánchez, L, Barzaghi, R, IHRF Team. Current activities of the newly established IAG/IGFS IHRF coordination center for the realization and maintenance of the IHRS/IHRF [presentation]. In: IAG workshop 2024 on Asia Pacific gravity, geoid and vertical datums. Manila, Philippines: IAG; 2024.Suche in Google Scholar

18. Singh, SK. Towards the modernization of Indian vertical datum. In: FIG congress 2018 embracing our smart world where the continents connect: enhancing the geospatial maturity of societies Istanbul. Turkey; 2018.Suche in Google Scholar

19. Emery, KO, Aubrey, DG. Tide gauges of India. J Coast Res 1989;5:489–501.Suche in Google Scholar

20. Amos, MJ, Featherstone, WE. Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 2009;83:57–68. https://doi.org/10.1007/s00190-008-0232-y.Suche in Google Scholar

21. Imakiire, T, Hakoiwa, E. JGD2000 (vertical) – the new height system of Japan. Bull Geogr Surv Inst 2004;51:31–51.Suche in Google Scholar

22. Jekeli, C, Yang, HJ, Kwon, JH. The offset of the South Korean vertical datum from a global geoid. KSCE J Civ Eng 2012;16:816–21. https://doi.org/10.1007/s12205-012-1320-3.Suche in Google Scholar

23. Kasenda, A, Kearsley, AHW. Offsets between some local height datums in the South East Asia region. In: 3rd meeting of the international gravity and geoid commission. Thessaloniki: Ziti Editions; 2003:384–8 pp.Suche in Google Scholar

24. Nyoka, CJ, Din, AHM, Pa’suya, MF, Omar, AH. A combined regional geopotential model using optimized global gravity field solutions. IOP Conf Ser Earth Environ Sci 2022;1051:012001.10.1088/1755-1315/1051/1/012001Suche in Google Scholar

25. Vidal-Vega, AI, Trejo-Soto, ME, Tocho, CN, Romero-Andrade, R, Nayak, K. Assessment of geoid models for geopotential values determination in Mexico’S continuous monitoring network. J South Am Earth Sci 2024:148.10.1016/j.jsames.2024.105192Suche in Google Scholar

26. Srinivas, N, Tiwari, VM. Gravity and geodetic studies in India: historical observations and advances during the past decade. Proc Indian Natl Sci Acad 2019;85:343–61.Suche in Google Scholar

27. Goyal, R. The Indian gravimetric geoid model based on the Stokes-Helmert approach with Vaníček-Kleusberg modification of the Stokes kernel: IndGG-SH2021. Kanpur and Perth: Indian Institute of Technology Kanpur and Curtin University of Technology; 2022.Suche in Google Scholar

28. Hu, G. Report on the analysis of the Asia Pacific Regional Geodetic Project (APRGP) GPS campaign 2023. GA Record 2024/27. Canberra, AU: Commonwealth of Australia (Geoscience Australia); 2024.Suche in Google Scholar

29. Hofmann-Wellenhof, B, Moritz, H. Physical geodesy. Vienna: Springer; 2005.Suche in Google Scholar

30. Moritz, H. Geodetic reference system 1980. Bull Geod 1980;54:395–405. https://doi.org/10.1007/bf02521480.Suche in Google Scholar

31. Tozer, B, Sandwell, DT, Smith, WHF, Olson, C, Beale, JR, Wessel, P. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci 2019;6:1847–64. https://doi.org/10.1029/2019ea000658.Suche in Google Scholar

32. Barthelmes, F. Definition of functionals of the geopotential and their calculation from spherical harmonic models [Internet]; 2013. Available from: http://icgem.gfz-potsdam.de/ICGEM/.Suche in Google Scholar

33. Bureau Gravimétrique International. IGSN71 reference stations [Internet]. Toulouse, FR: Bureau Gravimétrique International; 2025. Available from: https://bgi.obs-mip.fr/data-products/gravity-databases/igsn71-reference-stations/#/.Suche in Google Scholar

34. Goyal, R. The Indian gravimetric geoid model based on the curtin university approach with Featherstone-Evans-Olliver modification of the stokes kernel: IndGG-CUT2021. Kanpur and Perth: Indian Institute of Technology Kanpur and Curtin University of Technology; 2022.Suche in Google Scholar

35. Goyal, R. The Indian gravimetric geoid model based on the KTH method of least squares modification of the stokes formula with additive corrections: IndGG-LSMSA2021. Kanpur and Perth: Indian Institute of Technology Kanpur and Curtin University of Technology; 2022.Suche in Google Scholar

36. Goyal, R. Towards a gravimetric geoid model for the mainland India. Australia: School of Earth and Planetary Sciences; 2022.Suche in Google Scholar

37. ICGEM. Root mean square (rms) about mean of GNSS/levelling minus gravity field model derived geoid heights; 2025. Available from: https://icgem.gfz-potsdam.de/tom_gpslev.Suche in Google Scholar

38. Tocho, CN, Antokoletz, ED, Piñón, DA. Towards the realization of the International Height Reference Frame (IHRF) in Argentina. In: International association of geodesy symposia. Springer Science and Business Media Deutschland GmbH; 2020:11–20 pp.10.1007/1345_2020_93Suche in Google Scholar

39. Sánchez, L, Čunderlík, R, Dayoub, N, Mikula, K, Minarechová, Z, Šíma, Z, et al.. A conventional value for the geoid reference potential W0. J Geod 2016;90:815–35. https://doi.org/10.1007/s00190-016-0913-x.Suche in Google Scholar

40. Guimarães, GDN, Blitzkow, D, de Matos, ACOC, Silva, VC, Inoue, MEB. The establishment of the IHRF in Brazil: current situation and future perspectives. Rev Bras Cartogr 2022;74:651–70. https://doi.org/10.14393/rbcv74n3-64949.Suche in Google Scholar

41. Heiskanen, W, Moritz, H. Physical geodesy. San Francisco: W. H. Freeman and Company; 1967.10.1007/BF02525647Suche in Google Scholar

42. Mäkinen, J. The permanent tide and the International Height Reference Frame IHRF. J Geod 2021;95:106. https://doi.org/10.1007/s00190-021-01541-5.Suche in Google Scholar

43. Guimarães, GN, Tocho, C, Subiza Piña, WH, Oliveira Cancoro de Matos, AC, Gómez, A, Antokoletz ED, et al. Guía. In: Directrices para El Cálculo De Los Valores de Potencial de Gravedad en las Estaciones IHRF de la Región SIRGAS. Bogotá, Colombia: Guías técnicas. SIRGAS; 2024:06.Suche in Google Scholar

44. Torge, W. Geodesy, 3rd ed. Berlin: Gruyter, Editor; 2001.10.1515/9783110879957Suche in Google Scholar

45. Banković, T, Brajković, L, Banko, A, Pavasović, M. The impact of gravity on different height systems: a case study on Mt. Medvednica. Appl Sci (Switz) 2025;15:5680. https://doi.org/10.3390/app15105680.Suche in Google Scholar

46. Carrión, J, Flores, F, Rodríguez, F, Pozo, M. Global geopotential models assessment in ecuador based on geoid heights and geopotential values. J Geod Sci 2023;13:20220165. https://doi.org/10.1515/jogs-2022-0165.Suche in Google Scholar

47. Gerlach, C, Rummel, R. Benefit of classical leveling for geoid-based vertical reference frames. J Geod 2024;98:64. https://doi.org/10.1007/s00190-024-01849-y.Suche in Google Scholar

Received: 2025-04-30
Accepted: 2025-10-12
Published Online: 2025-11-05

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2025-0050/html
Button zum nach oben scrollen